BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 30029252)

  • 41. Color Reflectivity Discretization Analysis of OCT Images in the Detection of Glaucomatous Nerve Fiber Layer Defects.
    Shah SB; Garcia AG; Leiby BE; Cox LA; Katz LJ; Myers JS
    J Glaucoma; 2016 Apr; 25(4):e346-54. PubMed ID: 26766397
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of Retinal Nerve Fiber Layer Defect in Nonglaucomatous Eyes With Type II Diabetes.
    Jeon SJ; Kwon JW; La TY; Park CK; Choi JA
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4008-15. PubMed ID: 27490320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diagnostic classification of retinal nerve fiber layer measurement in myopic eyes: a comparison between time-domain and spectral-domain optical coherence tomography.
    Qiu KL; Zhang MZ; Leung CK; Zhang RP; Lu XH; Wang G; Lam DS
    Am J Ophthalmol; 2011 Oct; 152(4):646-653.e2. PubMed ID: 21726842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of myopic optic disc tilt on measurement of spectral-domain optical coherence tomography parameters.
    Shin HY; Park HY; Park CK
    Br J Ophthalmol; 2015 Jan; 99(1):69-74. PubMed ID: 25091955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage.
    Sihota R; Sony P; Gupta V; Dada T; Singh R
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2006-10. PubMed ID: 16639009
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topographic profiles of retinal nerve fiber layer defects affect the diagnostic performance of macular scans in preperimetric glaucoma.
    Kim MJ; Jeoung JW; Park KH; Choi YJ; Kim DM
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2079-87. PubMed ID: 24576877
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cirrus high-definition optical coherence tomography versus spectral optical coherence tomography/scanning laser ophthalmoscopy in the diagnosis of glaucoma.
    Koh KM; Jin S; Hwang YH
    Curr Eye Res; 2014 Jan; 39(1):62-8. PubMed ID: 24074220
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Longitudinal Evaluation of the Structural and Functional Changes Associated with Glaucoma in Myopia.
    Biswas S; Biswas P
    Optom Vis Sci; 2020 Jun; 97(6):448-456. PubMed ID: 32511167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma.
    Kim KE; Jeoung JW; Park KH; Kim DM; Kim SH
    Ophthalmology; 2015 Mar; 122(3):502-10. PubMed ID: 25444638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of peripapillary retinal nerve fiber layer thickness in myopic eyes by spectral-domain optical coherence tomography.
    Mohammad Salih PA
    J Glaucoma; 2012 Jan; 21(1):41-4. PubMed ID: 21173707
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography.
    Kim HJ; Jeoung JW; Yoo BW; Kim HC; Park KH
    Jpn J Ophthalmol; 2017 Jul; 61(4):324-333. PubMed ID: 28374270
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discriminating ability of optical coherence tomography data in staging glaucomatous damage.
    YĆ¼ksel N; Altintas O; Ozkan B; Karadag S; Caglar Y
    Can J Ophthalmol; 2009 Jun; 44(3):297-307. PubMed ID: 19491986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Macular imaging in highly myopic eyes with and without glaucoma.
    Nakano N; Hangai M; Noma H; Nukada M; Mori S; Morooka S; Takayama K; Kimura Y; Ikeda HO; Akagi T; Yoshimura N
    Am J Ophthalmol; 2013 Sep; 156(3):511-523.e6. PubMed ID: 23777978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glaucoma Diagnostic Ability of the Optical Coherence Tomography Angiography Vessel Density Parameters.
    Chung JK; Hwang YH; Wi JM; Kim M; Jung JJ
    Curr Eye Res; 2017 Nov; 42(11):1458-1467. PubMed ID: 28910159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of myopia on the thickness of the retinal nerve fiber layer measured by Cirrus HD optical coherence tomography.
    Kang SH; Hong SW; Im SK; Lee SH; Ahn MD
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4075-83. PubMed ID: 20237247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects.
    Lee EJ; Kim TW; Weinreb RN; Park KH; Kim SH; Kim DM
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):1138-44. PubMed ID: 21051691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diagnostic ability of spectral-domain versus time-domain optical coherence tomography in preperimetric glaucoma.
    Jeoung JW; Kim TW; Weinreb RN; Kim SH; Park KH; Kim DM
    J Glaucoma; 2014; 23(5):299-306. PubMed ID: 23377582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retinal nerve fiber layer progression in glaucoma: a comparison between retinal nerve fiber layer thickness and retardance.
    Xu G; Weinreb RN; Leung CKS
    Ophthalmology; 2013 Dec; 120(12):2493-2500. PubMed ID: 24053994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diagnostic Ability of Wide-field Retinal Nerve Fiber Layer Maps Using Swept-Source Optical Coherence Tomography for Detection of Preperimetric and Early Perimetric Glaucoma.
    Lee WJ; Na KI; Kim YK; Jeoung JW; Park KH
    J Glaucoma; 2017 Jun; 26(6):577-585. PubMed ID: 28368998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ganglion cell-inner plexiform layer thickness of high definition optical coherence tomography in perimetric and preperimetric glaucoma.
    Begum VU; Addepalli UK; Yadav RK; Shankar K; Senthil S; Garudadri CS; Rao HL
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):4768-75. PubMed ID: 25015361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.