These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30029367)

  • 1. Highly selective detection of spermine in human urine via a nanometal surface energy transfer platform.
    Yuan D; Liu JJ; Zhang HZ; Wang N; Zou HY; Huang CZ; Wang J
    Talanta; 2018 Oct; 188():218-224. PubMed ID: 30029367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods.
    Zhang H; Liu P; Wang H; Ji X; Zhao M; Song Z
    Anal Bioanal Chem; 2021 Mar; 413(6):1541-1547. PubMed ID: 32705288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calf thymus DNA-stabilized polythiophene fluorescence probe for label-free detection of spermine.
    Wang J; Zhang Q; De Liu Z; Huang CZ
    Analyst; 2012 Dec; 137(23):5565-70. PubMed ID: 23050262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer.
    Li M; Wang Q; Shi X; Hornak LA; Wu N
    Anal Chem; 2011 Sep; 83(18):7061-5. PubMed ID: 21842845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer.
    Lu X; Dong X; Zhang K; Han X; Fang X; Zhang Y
    Analyst; 2013 Jan; 138(2):642-50. PubMed ID: 23172079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence quenching and spectrophotometric methods for the determination of daunorubicin with meso-tera (4-sulphophenyl) porphyrin as probe.
    Tian J; Liu S; Liu Z; Yang J; Zhu J; Qiao M; Hu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():7-13. PubMed ID: 24177862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dual-Readout Method for Biothiols Detection Based on the NSET of Nitrogen-Doped Carbon Quantum Dots-Au Nanoparticles System.
    Fu X; Gu D; Zhao S; Zhou N; Zhang H
    J Fluoresc; 2017 Sep; 27(5):1597-1605. PubMed ID: 28401410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and selective plasmonic assay for spermine as biomarker in human urine.
    Jornet-Martínez N; González-Béjar M; Moliner-Martínez Y; Campíns-Falcó P; Pérez-Prieto J
    Anal Chem; 2014 Feb; 86(3):1347-51. PubMed ID: 24428122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Turn-on-off-on" fluorescence switching of quantum dots-cationic porphyrin nanohybrid: a sensor for DNA.
    Vaishnavi E; Renganathan R
    Analyst; 2014 Jan; 139(1):225-34. PubMed ID: 24187682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the aggregation behavior of cationic porphyrins and their interaction with ctDNA].
    Ma HM; Chen X; Sun ST; Zhang LN; Wu D; Zhu PH; Li Y; Du B; Wei Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):423-7. PubMed ID: 19445219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection.
    Liu Y; Zhao Y; Wang Y; Li CM
    J Colloid Interface Sci; 2015 Feb; 439():7-11. PubMed ID: 25463169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave assisted synthesis of tyrosine protected gold nanoparticles for dual (colorimetric and fluorimetric) detection of spermine and spermidine in biological samples.
    Rawat KA; Bhamore JR; Singhal RK; Kailasa SK
    Biosens Bioelectron; 2017 Feb; 88():71-77. PubMed ID: 27478105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed DNA detection using a gold nanorod-based fluorescence resonance energy transfer technique.
    Wu Q; He Y; Tian J; Zhang J; Hu K; Zhao Y; Zhao S
    Luminescence; 2015 Dec; 30(8):1226-32. PubMed ID: 25758985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature growth of ZnO nanotubes for fluorescence quenching detection of DNA.
    Ahmed F; Arshi N; Dwivedi S; Koo BH; Azam A; Alsharaeh E
    J Mater Sci Mater Med; 2016 Dec; 27(12):189. PubMed ID: 27844304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective colorimetric analysis of spermine based on the cross-linking aggregation of gold nanoparticles chain assembly.
    Wang J; Wu ZL; Zhang HZ; Li YF; Huang CZ
    Talanta; 2017 May; 167():193-200. PubMed ID: 28340710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic Self-Assembled Platform of Perylenediimide-Sodium Dodecylsulfate for Detection of Spermine in Clinical Samples.
    Singh P; Mittal LS; Bhargava G; Kumar S
    Chem Asian J; 2017 Apr; 12(8):890-899. PubMed ID: 28221716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydopamine-embedded Cu(2-x)Se nanoparticles as a sensitive biosensing platform through the coupling of nanometal surface energy transfer and photo-induced electron transfer.
    Zou HY; Gao PF; Gao MX; Huang CZ
    Analyst; 2015 Jun; 140(12):4121-9. PubMed ID: 25899757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods.
    Zhang J; Wang S; Gao N; Feng D; Wang L; Chen H
    Biosens Bioelectron; 2015 Oct; 72():282-7. PubMed ID: 25996781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed spectroscopic investigations to reveal the nature of interaction of anionic porphyrin with calf thymus DNA.
    Bhattacharya S; Mandal G; Ganguly T
    J Photochem Photobiol B; 2010 Oct; 101(1):89-96. PubMed ID: 20655240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.