BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 30029464)

  • 1. Degradation Characteristics of Color Index Direct Blue 15 Dye Using Iron-Carbon Micro-Electrolysis Coupled with H₂O₂.
    Yang B; Gao Y; Yan D; Xu H; Wang J
    Int J Environ Res Public Health; 2018 Jul; 15(7):. PubMed ID: 30029464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation.
    Sun Z; Xu Z; Zhou Y; Zhang D; Chen W
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26869-26882. PubMed ID: 31302892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H
    Wang Y; Wu X; Yi J; Chen L; Lan T; Dai J
    Water Sci Technol; 2018 Jul; 2017(3):707-717. PubMed ID: 30016288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.
    Almeida LC; Silva BF; Zanoni MV
    Chemosphere; 2015 Oct; 136():63-71. PubMed ID: 25935699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate.
    Li P; Liu Z; Wang X; Guo Y; Wang L
    Chemosphere; 2017 Aug; 180():100-107. PubMed ID: 28391148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater.
    Chang MC; Shu HY; Yu HH
    J Hazard Mater; 2006 Dec; 138(3):574-81. PubMed ID: 16806683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of organic dye wastewater by H2O2-enhanced aluminum carbon micro-electrolysis.
    Huang X; Chen Y; Sun D; Ma H; Wang G; Dong X
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72586-72597. PubMed ID: 35608760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.
    Yang R; Zhu J; Li Y; Zhang H
    Int J Environ Res Public Health; 2016 Apr; 13(5):. PubMed ID: 27136574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal mechanism of persistent organic pollutants by Fe-C micro-electrolysis.
    Ren D; Huang Y; Li S; Wang Z; Zhang S; Zhang X; Gong X
    Environ Technol; 2022 Mar; 43(7):1050-1067. PubMed ID: 32838686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverse-electrodialysis electrolysis cell.
    Li X; Jin X; Zhao N; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Mar; 228():322-329. PubMed ID: 28086173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe-Loaded MOF-545(Fe): Peroxidase-Like Activity for Dye Degradation Dyes and High Adsorption for the Removal of Dyes from Wastewater.
    Zhang C; Li H; Li C; Li Z
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31906165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.
    Wang X; Gong X; Zhang Q; Du H
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S63-8. PubMed ID: 25078842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-voltage pulse electrolysis method for the degradation of anthraquinone and azo dyes in chloride medium by anodic oxidation on Ti/IrO
    Chao HJ; Xue D; Jiang W; Li D; Hu Z; Kang J; Liu D
    Water Environ Res; 2020 May; 92(5):779-788. PubMed ID: 31697421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater.
    Yan Z; Xie S; Yang M
    Environ Sci Pollut Res Int; 2024 Feb; 31(8):11886-11897. PubMed ID: 38225488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H
    Zhou D; Hu Y; Guo Q; Yuan W; Deng J; Dang Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1015-1025. PubMed ID: 28035604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced oxidation processes in azo dye wastewater treatment.
    Papić S; Koprivanac N; Bozić AL; Vujević D; Dragicević SK; Kusić H; Peternel I
    Water Environ Res; 2006 Jun; 78(6):572-9. PubMed ID: 16894983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic analysis of s-Fe/Cu two-component micro-electrolysis materials and degradation of dye wastewater.
    Du X; Liu J; Liu Q; Li G; Jiang Y; Zhang Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46574-46586. PubMed ID: 36717421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved decolorization of dye wastewater in an electrochemical system powered by microbial fuel cells and intensified by micro-electrolysis.
    Liang S; Zhang B; Shi J; Wang T; Zhang L; Wang Z; Chen C
    Bioelectrochemistry; 2018 Dec; 124():112-118. PubMed ID: 30015267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of 1,2-dichloroethane from wash water of ion-exchange resin using Fenton's oxidation.
    Vilve M; Vilhunen S; Vepsäläinen M; Kurniawan TA; Lehtonen N; Isomäki H; Sillanpää M
    Environ Sci Pollut Res Int; 2010 May; 17(4):875-84. PubMed ID: 20101466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.