BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 30029481)

  • 1. 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing.
    Hemanth S; Halder A; Caviglia C; Chi Q; Keller SS
    Biosensors (Basel); 2018 Jul; 8(3):. PubMed ID: 30029481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.
    Sethuraman V; Muthuraja P; Anandha Raj J; Manisankar P
    Biosens Bioelectron; 2016 Oct; 84():112-9. PubMed ID: 26751827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite.
    Unnikrishnan B; Palanisamy S; Chen SM
    Biosens Bioelectron; 2013 Jan; 39(1):70-5. PubMed ID: 22795531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance electrochemical glucose sensor based on three-dimensional MoS
    Jeong JM; Yang M; Kim DS; Lee TJ; Choi BG; Kim DH
    J Colloid Interface Sci; 2017 Nov; 506():379-385. PubMed ID: 28750240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-by-layer assembly of functionalized reduced graphene oxide for direct electrochemistry and glucose detection.
    Mascagni DBT; Miyazaki CM; da Cruz NC; de Moraes ML; Riul A; Ferreira M
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():739-745. PubMed ID: 27524075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.
    Dalkıran B; Erden PE; Kılıç E
    Anal Bioanal Chem; 2016 Jun; 408(16):4329-39. PubMed ID: 27074783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications.
    Sanad MF; Chava VSN; Shalan AE; Enriquez LG; Zheng T; Pilla S; Sreenivasan ST
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40731-40741. PubMed ID: 34424665
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zhang B; Li C; Zhang H; Chen Y; Jiang H; Chen L; Ur Rehman F; Wang X
    J Biomed Nanotechnol; 2018 Jul; 14(7):1277-1286. PubMed ID: 29944101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.
    Tiwari JN; Vij V; Kemp KC; Kim KS
    ACS Nano; 2016 Jan; 10(1):46-80. PubMed ID: 26579616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode.
    Eksin E; Zor E; Erdem A; Bingol H
    Biosens Bioelectron; 2017 Jun; 92():207-214. PubMed ID: 28214748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film.
    Cao L; Han GC; Xiao H; Chen Z; Fang C
    Anal Chim Acta; 2020 Feb; 1096():34-43. PubMed ID: 31883589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and utilisation of graphene for fabrication of electrochemical sensors.
    Lawal AT
    Talanta; 2015 Jan; 131():424-43. PubMed ID: 25281124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine.
    Jin H; Zhao C; Gui R; Gao X; Wang Z
    Anal Chim Acta; 2018 Sep; 1025():154-162. PubMed ID: 29801604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing.
    Osikoya AO; Parlak O; Murugan NA; Dikio ED; Moloto H; Uzun L; Turner AP; Tiwari A
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):496-504. PubMed ID: 27157880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure.
    Wang N; Lin M; Dai H; Ma H
    Biosens Bioelectron; 2016 May; 79():320-6. PubMed ID: 26720921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials.
    Guo Z; Wang ZY; Wang HH; Huang GQ; Li MM
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():197-204. PubMed ID: 26354255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrocene-functionalized graphene electrode for biosensing applications.
    Rabti A; Mayorga-Martinez CC; Baptista-Pires L; Raouafi N; Merkoçi A
    Anal Chim Acta; 2016 Jul; 926():28-35. PubMed ID: 27216390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing.
    Burrs SL; Bhargava M; Sidhu R; Kiernan-Lewis J; Gomes C; Claussen JC; McLamore ES
    Biosens Bioelectron; 2016 Nov; 85():479-487. PubMed ID: 27209574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide modified single-use electrodes and their application for voltammetric miRNA analysis.
    Isin D; Eksin E; Erdem A
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1242-1249. PubMed ID: 28415412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.