These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-Temperature Core Flood Investigation of Nanocellulose as a Green Additive for Enhanced Oil Recovery. Aadland RC; Jakobsen TD; Heggset EB; Long-Sanouiller H; Simon S; Paso KG; Syverud K; Torsæter O Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035570 [TBL] [Abstract][Full Text] [Related]
3. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR. Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280 [TBL] [Abstract][Full Text] [Related]
4. Experiments and network model of flow of oil-water emulsion in porous media. Romero MI; Carvalho MS; Alvarado V Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046305. PubMed ID: 22181259 [TBL] [Abstract][Full Text] [Related]
5. Altered transport of lindane caused by the retention of natural particles in saturated porous media. Ngueleu SK; Grathwohl P; Cirpka OA J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485 [TBL] [Abstract][Full Text] [Related]
6. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. Kamrani S; Rezaei M; Kord M; Baalousha M Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305 [TBL] [Abstract][Full Text] [Related]
7. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR). Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. Dataset on effect of sand grain size and water salinity on oil recovery. Okoro EE; Lawal AO; Sanni SE; Orodu KB; Emetere ME Data Brief; 2021 Feb; 34():106695. PubMed ID: 33437853 [TBL] [Abstract][Full Text] [Related]
10. Transport and retention of nano emulsified vegetable oil in porous media: Effect of pore straining, roughness wedging, and interfacial effects. He B; He J; Bi E; Zou H; Liu T; Liu Z J Environ Manage; 2022 Oct; 320():115912. PubMed ID: 35944327 [TBL] [Abstract][Full Text] [Related]
11. Exploring the use of cellulose nanocrystal as surface-washing agent for oiled shoreline cleanup. Chen Z; An C; Yin J; Owens E; Lee K; Zhang K; Tian X J Hazard Mater; 2021 Jan; 402():123464. PubMed ID: 32693337 [TBL] [Abstract][Full Text] [Related]
12. Pore-scale investigation of micron-size polyacrylamide elastic microspheres (MPEMs) transport and retention in saturated porous media. Yao C; Lei G; Cathles LM; Steenhuis TS Environ Sci Technol; 2014 May; 48(9):5329-35. PubMed ID: 24749927 [TBL] [Abstract][Full Text] [Related]
13. Transport of bacteria in porous media: I. An experimental investigation. Sarkar AK; Georgiou G; Sharma MM Biotechnol Bioeng; 1994 Aug; 44(4):489-97. PubMed ID: 18618783 [TBL] [Abstract][Full Text] [Related]
14. Transport and retention of silica nanoparticles in glass-bead columns: effects of particle size, type, and concentration of ionic species. Daneshfar R; Ashoori S; Soltani Soulgani B Sci Rep; 2024 Jan; 14(1):685. PubMed ID: 38182781 [TBL] [Abstract][Full Text] [Related]
15. Calcium lignosulfonate adsorption and desorption on Berea sandstone. Grigg RB; Bai B J Colloid Interface Sci; 2004 Nov; 279(1):36-45. PubMed ID: 15380409 [TBL] [Abstract][Full Text] [Related]
16. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media. Bai H; Cochet N; Pauss A; Lamy E Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829 [TBL] [Abstract][Full Text] [Related]
17. Effect of ionic strength on barium transport in porous media. Ye Z; Prigiobbe V J Contam Hydrol; 2018 Feb; 209():24-32. PubMed ID: 29402467 [TBL] [Abstract][Full Text] [Related]
18. Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery. Bila A; Stensen JÅ; Torsæter O Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159232 [TBL] [Abstract][Full Text] [Related]
19. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity. Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the profile control mechanisms of dispersed particle gel. Zhao G; Dai C; Zhao M PLoS One; 2014; 9(6):e100471. PubMed ID: 24950174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]