These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30029619)

  • 21. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DLin-7 is required in postsynaptic lamina neurons to prevent light-induced photoreceptor degeneration in Drosophila.
    Soukup SF; Pocha SM; Yuan M; Knust E
    Curr Biol; 2013 Jul; 23(14):1349-54. PubMed ID: 23850283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila.
    Kiselev A; Socolich M; Vinós J; Hardy RW; Zuker CS; Ranganathan R
    Neuron; 2000 Oct; 28(1):139-52. PubMed ID: 11086990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process.
    Harris WA; Stark WS
    J Gen Physiol; 1977 Mar; 69(3):261-91. PubMed ID: 139462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium signalling in Drosophila photoreceptors measured with GCaMP6f.
    Asteriti S; Liu CH; Hardie RC
    Cell Calcium; 2017 Jul; 65():40-51. PubMed ID: 28238353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors.
    Hardie RC; Raghu P; Moore S; Juusola M; Baines RA; Sweeney ST
    Neuron; 2001 Apr; 30(1):149-59. PubMed ID: 11343651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. rdgE: a novel retinal degeneration mutation in Drosophila melanogaster.
    Zars T; Hyde DR
    Genetics; 1996 Sep; 144(1):127-38. PubMed ID: 8878679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The TRP calcium channel and retinal degeneration.
    Minke B
    Adv Exp Med Biol; 2002; 514():601-22. PubMed ID: 12596945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease.
    Lee S; Bang SM; Hong YK; Lee JH; Jeong H; Park SH; Liu QF; Lee IS; Cho KS
    Dis Model Mech; 2016 Mar; 9(3):295-306. PubMed ID: 26659252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Daily blue-light exposure shortens lifespan and causes brain neurodegeneration in
    Nash TR; Chow ES; Law AD; Fu SD; Fuszara E; Bilska A; Bebas P; Kretzschmar D; Giebultowicz JM
    NPJ Aging Mech Dis; 2019; 5():8. PubMed ID: 31636947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid signaling in Drosophila photoreceptors.
    Raghu P; Yadav S; Mallampati NB
    Biochim Biophys Acta; 2012 Aug; 1821(8):1154-65. PubMed ID: 22487656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically induced retinal degeneration in the rdgB (retinal degeneration B) mutant of Drosophila.
    Rubinstein CT; Bar-Nachum S; Selinger Z; Minke B
    Vis Neurosci; 1989; 2(6):541-51. PubMed ID: 2518632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation.
    Milligan SC; Alb JG; Elagina RB; Bankaitis VA; Hyde DR
    J Cell Biol; 1997 Oct; 139(2):351-63. PubMed ID: 9334340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular genetics of retinal degeneration: A Drosophila perspective.
    Shieh BH
    Fly (Austin); 2011; 5(4):356-68. PubMed ID: 21897116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant.
    Steele F; O'Tousa JE
    Neuron; 1990 Jun; 4(6):883-90. PubMed ID: 2361011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Successive requirement of Glass and Hazy for photoreceptor specification and maintenance in Drosophila.
    Bernardo-Garcia FJ; Humberg TH; Fritsch C; Sprecher SG
    Fly (Austin); 2017 Apr; 11(2):112-120. PubMed ID: 27723419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drosophila fatty acid transport protein regulates rhodopsin-1 metabolism and is required for photoreceptor neuron survival.
    Dourlen P; Bertin B; Chatelain G; Robin M; Napoletano F; Roux MJ; Mollereau B
    PLoS Genet; 2012; 8(7):e1002833. PubMed ID: 22844251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complete RNAi rescue of neuronal degeneration in a constitutively active Drosophila TRP channel mutant.
    Geng C; Pellegrino A; Bowman J; Zhu L; Pak WL
    Biochim Biophys Acta; 2004 Sep; 1674(1):91-7. PubMed ID: 15342118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice.
    Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T
    Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drosophila crumbs is required to inhibit light-induced photoreceptor degeneration.
    Johnson K; Grawe F; Grzeschik N; Knust E
    Curr Biol; 2002 Oct; 12(19):1675-80. PubMed ID: 12361571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.