These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 3003003)
1. Rhodopsin phosphorylation in developing normal and degenerative mouse retinas. Shuster TA; Farber DB Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):264-8. PubMed ID: 3003003 [TBL] [Abstract][Full Text] [Related]
2. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment. Gupta BD Indian J Biochem Biophys; 1989 Oct; 26(5):305-10. PubMed ID: 2560768 [TBL] [Abstract][Full Text] [Related]
3. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods. Liebman PA; Sitaramayya A Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():215-25. PubMed ID: 6328918 [No Abstract] [Full Text] [Related]
4. Cyclic GMP in the retinas of normal mice and those heterozygous for early-onset photoreceptor dystrophy. Doshi M; Voaden MJ; Arden GB Exp Eye Res; 1985 Jul; 41(1):61-5. PubMed ID: 2863161 [TBL] [Abstract][Full Text] [Related]
5. [Biochemical disorders in hereditary retinal degeneration: changes in cyclic nucleotide phosphodiesterase activity and rhodopsin concentration in the retinas of Campbell rats]. Ostapenko IA Vopr Med Khim; 1981; 27(4):519-23. PubMed ID: 6270908 [TBL] [Abstract][Full Text] [Related]
6. Phosphodiesterase dysfunction, cyclic GMP accumulation, and visual cell degeneration in early-onset inherited blindness. Lolley RN; Lee RH Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():315-27. PubMed ID: 6145326 [No Abstract] [Full Text] [Related]
7. Adenoviral-mediated gene transfer to retinal explants during development and degeneration. Pang J; Cheng M; Stevenson D; Trousdale MD; Dorey CK; Blanks JC Exp Eye Res; 2004 Aug; 79(2):189-201. PubMed ID: 15325566 [TBL] [Abstract][Full Text] [Related]
8. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Bowes C; Li T; Danciger M; Baxter LC; Applebury ML; Farber DB Nature; 1990 Oct; 347(6294):677-80. PubMed ID: 1977087 [TBL] [Abstract][Full Text] [Related]
10. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Roof DJ; Adamian M; Hayes A Invest Ophthalmol Vis Sci; 1994 Nov; 35(12):4049-62. PubMed ID: 7960587 [TBL] [Abstract][Full Text] [Related]
11. Evidence for reduced binding of cyclic GMP to cyclic GMP phosphodiesterase in photoreceptors of mice heterozygous for the rd gene. Voaden MJ; Willmott NJ Curr Eye Res; 1990 Jul; 9(7):643-51. PubMed ID: 2170076 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of Bcl-2 or Bcl-XL transgenes and photoreceptor degeneration. Joseph RM; Li T Invest Ophthalmol Vis Sci; 1996 Nov; 37(12):2434-46. PubMed ID: 8933760 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a phosphodiesterase-immunoreactive polypeptide from rod photoreceptors of developing rd mouse retinas. Lee RH; Navon SE; Brown BM; Fung BK; Lolley RN Invest Ophthalmol Vis Sci; 1988 Jul; 29(7):1021-7. PubMed ID: 2843477 [TBL] [Abstract][Full Text] [Related]
14. Altered rhodopsin accessibility in the retinal dystrophic mouse. Takemoto DJ; Hansen J; Takemoto LJ Biochem Biophys Res Commun; 1985 Oct; 132(2):804-10. PubMed ID: 2998385 [TBL] [Abstract][Full Text] [Related]