These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30030173)

  • 1. Mechanical confinement via a PEG/Collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231.
    Reynolds DS; Bougher KM; Letendre JH; Fitzgerald SF; Gisladottir UO; Grinstaff MW; Zaman MH
    Acta Biomater; 2018 Sep; 77():85-95. PubMed ID: 30030173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.
    Chan BK; Wippich CC; Wu CJ; Sivasankar PM; Schmidt G
    Macromol Biosci; 2012 Nov; 12(11):1490-501. PubMed ID: 23070957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.
    DeKosky BJ; Dormer NH; Ingavle GC; Roatch CH; Lomakin J; Detamore MS; Gehrke SH
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1533-42. PubMed ID: 20626274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen.
    Berger AJ; Linsmeier KM; Kreeger PK; Masters KS
    Biomaterials; 2017 Oct; 141():125-135. PubMed ID: 28683337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration.
    Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X
    Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds.
    Daniele MA; Adams AA; Naciri J; North SH; Ligler FS
    Biomaterials; 2014 Feb; 35(6):1845-56. PubMed ID: 24314597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.
    Rennerfeldt DA; Renth AN; Talata Z; Gehrke SH; Detamore MS
    Biomaterials; 2013 Nov; 34(33):8241-57. PubMed ID: 23932504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination.
    Beck JN; Singh A; Rothenberg AR; Elisseeff JH; Ewald AJ
    Biomaterials; 2013 Dec; 34(37):9486-95. PubMed ID: 24044993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
    Ingavle GC; Gehrke SH; Detamore MS
    Biomaterials; 2014 Apr; 35(11):3558-70. PubMed ID: 24462353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.
    Madaghiele M; Marotta F; Demitri C; Montagna F; Maffezzoli A; Sannino A
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):183-92. PubMed ID: 24700267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression.
    Bearinger JP; Castner DG; Healy KE
    J Biomater Sci Polym Ed; 1998; 9(7):629-52. PubMed ID: 9686332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.
    Lou J; Stowers R; Nam S; Xia Y; Chaudhuri O
    Biomaterials; 2018 Feb; 154():213-222. PubMed ID: 29132046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network.
    Kurisawa M; Terano M; Yui N
    J Biomater Sci Polym Ed; 1997; 8(9):691-708. PubMed ID: 9257182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable three-dimensional tumor microenvironments to study mechanobiology in ovarian cancer.
    Horst EN; Novak CM; Burkhard K; Snyder CS; Verma R; Crochran DE; Geza IA; Fermanich W; Mehta P; Schlautman DC; Tran LA; Brezenger ME; Mehta G
    Acta Biomater; 2022 Jul; 146():222-234. PubMed ID: 35487424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite Cellularized Structures Created from an Interpenetrating Polymer Network Hydrogel Reinforced by a 3D Woven Scaffold.
    Moffat KL; Goon K; Moutos FT; Estes BT; Oswald SJ; Zhao X; Guilak F
    Macromol Biosci; 2018 Oct; 18(10):e1800140. PubMed ID: 30040175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.
    Tong X; Yang F
    Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation.
    Vorwald CE; Gonzalez-Fernandez T; Joshee S; Sikorski P; Leach JK
    Acta Biomater; 2020 May; 108():142-152. PubMed ID: 32173582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multifunctional Hydrogel Delivers Gold Compound and Inhibits Human Lung Cancer Xenograft.
    Lee P; Lok CN; Che CM; Kao WJ
    Pharm Res; 2019 Mar; 36(4):61. PubMed ID: 30850894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering.
    Munoz-Pinto DJ; Jimenez-Vergara AC; Gharat TP; Hahn MS
    Biomaterials; 2015 Feb; 40():32-42. PubMed ID: 25433604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.