BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 30030394)

  • 1. Age-Related Trajectories of Functional Coupling between the VTA and Nucleus Accumbens Depend on Motivational State.
    Murty VP; Shah H; Montez D; Foran W; Calabro F; Luna B
    J Neurosci; 2018 Aug; 38(34):7420-7427. PubMed ID: 30030394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior.
    Ballard IC; Murty VP; Carter RM; MacInnes JJ; Huettel SA; Adcock RA
    J Neurosci; 2011 Jul; 31(28):10340-6. PubMed ID: 21753011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medial Nucleus Accumbens Projections to the Ventral Tegmental Area Control Food Consumption.
    Bond CW; Trinko R; Foscue E; Furman K; Groman SM; Taylor JR; DiLeone RJ
    J Neurosci; 2020 Jun; 40(24):4727-4738. PubMed ID: 32354856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI.
    Krebs RM; Heipertz D; Schuetze H; Duzel E
    Neuroimage; 2011 Sep; 58(2):647-55. PubMed ID: 21723396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.
    Beloate LN; Omrani A; Adan RA; Webb IC; Coolen LM
    J Neurosci; 2016 Sep; 36(38):9949-61. PubMed ID: 27656032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reward-motivated learning: mesolimbic activation precedes memory formation.
    Adcock RA; Thangavel A; Whitfield-Gabrieli S; Knutson B; Gabrieli JD
    Neuron; 2006 May; 50(3):507-17. PubMed ID: 16675403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations.
    Yang H; de Jong JW; Tak Y; Peck J; Bateup HS; Lammel S
    Neuron; 2018 Jan; 97(2):434-449.e4. PubMed ID: 29307710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat.
    Webb IC; Baltazar RM; Wang X; Pitchers KK; Coolen LM; Lehman MN
    J Biol Rhythms; 2009 Dec; 24(6):465-76. PubMed ID: 19926806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased functional connectivity between ventral tegmental area and nucleus accumbens in Internet gaming disorder: evidence from resting state functional magnetic resonance imaging.
    Zhang JT; Ma SS; Yip SW; Wang LJ; Chen C; Yan CG; Liu L; Liu B; Deng LY; Liu QX; Fang XY
    Behav Brain Funct; 2015 Nov; 11(1):37. PubMed ID: 26582309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reward Enhances Memory via Age-Varying Online and Offline Neural Mechanisms across Development.
    Cohen AO; Glover MM; Shen X; Phaneuf CV; Avallone KN; Davachi L; Hartley CA
    J Neurosci; 2022 Aug; 42(33):6424-6434. PubMed ID: 35790398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased Ventral Tegmental Area CB1R Signaling Reduces Sign Tracking and Shifts Cue-Outcome Dynamics in Rat Nucleus Accumbens.
    Bacharach SZ; Martin DA; Stapf CA; Sun F; Li Y; Cheer JF; Calu DJ
    J Neurosci; 2023 Jun; 43(25):4684-4696. PubMed ID: 37208179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampus and Prefrontal Cortex Predict Distinct Timescales of Activation in the Human Ventral Tegmental Area.
    Murty VP; Ballard IC; Adcock RA
    Cereb Cortex; 2017 Feb; 27(2):1660-1669. PubMed ID: 26826101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.
    MacInnes JJ; Dickerson KC; Chen NK; Adcock RA
    Neuron; 2016 Mar; 89(6):1331-1342. PubMed ID: 26948894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia.
    Rolland B; Amad A; Poulet E; Bordet R; Vignaud A; Bation R; Delmaire C; Thomas P; Cottencin O; Jardri R
    Schizophr Bull; 2015 Jan; 41(1):291-9. PubMed ID: 25053649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area.
    Krebs RM; Schott BH; Düzel E
    Biol Psychiatry; 2009 Jan; 65(2):103-10. PubMed ID: 18835480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent circuitry underlying food reward and intake effects of ghrelin: dopaminergic VTA-accumbens projection mediates ghrelin's effect on food reward but not food intake.
    Skibicka KP; Shirazi RH; Rabasa-Papio C; Alvarez-Crespo M; Neuber C; Vogel H; Dickson SL
    Neuropharmacology; 2013 Oct; 73():274-83. PubMed ID: 23770258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans.
    Kahn I; Shohamy D
    Hippocampus; 2013 Mar; 23(3):187-92. PubMed ID: 23129267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory.
    Murty VP; Tompary A; Adcock RA; Davachi L
    J Neurosci; 2017 Jan; 37(3):537-545. PubMed ID: 28100737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing.
    Richter A; Reinhard F; Kraemer B; Gruber O
    Eur Neuropsychopharmacol; 2020 Jul; 36():137-150. PubMed ID: 32546416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy of Distinct Dopamine Projection Populations in Behavioral Reinforcement.
    Heymann G; Jo YS; Reichard KL; McFarland N; Chavkin C; Palmiter RD; Soden ME; Zweifel LS
    Neuron; 2020 Mar; 105(5):909-920.e5. PubMed ID: 31879163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.