These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3003063)

  • 1. Signal recognition particle mediates the insertion of a transmembrane protein which has a cytoplasmic NH2 terminus.
    Holland EC; Drickamer K
    J Biol Chem; 1986 Jan; 261(3):1286-92. PubMed ID: 3003063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat liver asialoglycoprotein receptor lacks a cleavable NH2-terminal signal sequence.
    Holland EC; Leung JO; Drickamer K
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7338-42. PubMed ID: 6095287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major and minor forms of the rat liver asialoglycoprotein receptor are independent galactose-binding proteins. Primary structure and glycosylation heterogeneity of minor receptor forms.
    Halberg DF; Wager RE; Farrell DC; Hildreth J; Quesenberry MS; Loeb JA; Holland EC; Drickamer K
    J Biol Chem; 1987 Jul; 262(20):9828-38. PubMed ID: 3597443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion analysis of the internal signal-anchor domain of the human asialoglycoprotein receptor H1.
    Spiess M; Handschin C
    EMBO J; 1987 Sep; 6(9):2683-91. PubMed ID: 3678203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal recognition particle-dependent membrane insertion of mouse invariant chain: a membrane-spanning protein with a cytoplasmically exposed amino terminus.
    Lipp J; Dobberstein B
    J Cell Biol; 1986 Jun; 102(6):2169-75. PubMed ID: 3458708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internally transposed signal sequence of carp preproinsulin retains its functions with the signal recognition particle.
    Wiedmann M; Huth A; Rapoport TA
    FEBS Lett; 1986 Jan; 194(1):139-45. PubMed ID: 3000822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal recognition particle-dependent insertion of coronavirus E1, an intracellular membrane glycoprotein.
    Rottier P; Armstrong J; Meyer DI
    J Biol Chem; 1985 Apr; 260(8):4648-52. PubMed ID: 2985561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum.
    Vergères G; Ramsden J; Waskell L
    J Biol Chem; 1995 Feb; 270(7):3414-22. PubMed ID: 7852428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide.
    Szczesna-Skorupa E; Browne N; Mead D; Kemper B
    Proc Natl Acad Sci U S A; 1988 Feb; 85(3):738-42. PubMed ID: 3422456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A signal sequence is required for the functions of the signal recognition particle.
    Wiedmann M; Huth A; Rapoport TA
    Biochem Biophys Res Commun; 1986 Jan; 134(2):790-6. PubMed ID: 3004463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An internal signal sequence: the asialoglycoprotein receptor membrane anchor.
    Spiess M; Lodish HF
    Cell; 1986 Jan; 44(1):177-85. PubMed ID: 3753585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transmembrane segment of the human transferrin receptor functions as a signal peptide.
    Zerial M; Melancon P; Schneider C; Garoff H
    EMBO J; 1986 Jul; 5(7):1543-50. PubMed ID: 3017701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A signal sequence receptor in the endoplasmic reticulum membrane.
    Wiedmann M; Kurzchalia TV; Hartmann E; Rapoport TA
    Nature; 1987 Aug 27-Sep 2; 328(6133):830-3. PubMed ID: 3041222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP.
    Siegel V; Walter P
    Cell; 1988 Jan; 52(1):39-49. PubMed ID: 2830980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The human docking protein does not associate with the membrane of the rough endoplasmic reticulum via a signal or insertion sequence-mediated mechanism.
    Hortsch M; Meyer DI
    Biochem Biophys Res Commun; 1988 Jan; 150(1):111-7. PubMed ID: 2827661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tripartite structure of the signals that determine protein insertion into the endoplasmic reticulum membrane.
    Haeuptle MT; Flint N; Gough NM; Dobberstein B
    J Cell Biol; 1989 Apr; 108(4):1227-36. PubMed ID: 2784443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an internal topogenic signal sequence in human Band 3, the erythrocyte anion exchanger.
    Tam LY; Loo TW; Clarke DM; Reithmeier RA
    J Biol Chem; 1994 Dec; 269(51):32542-50. PubMed ID: 7798256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How proteins move across the endoplasmic reticulum membrane.
    Blobel G
    Hepatology; 1987; 7(1 Suppl):26S-29S. PubMed ID: 3026943
    [No Abstract]   [Full Text] [Related]  

  • 19. Direct evidence for the transmembrane orientation of the hepatic glycoprotein receptors.
    Chiacchia KB; Drickamer K
    J Biol Chem; 1984 Dec; 259(24):15440-6. PubMed ID: 6150936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5.
    Anderson DJ; Mostov KE; Blobel G
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7249-53. PubMed ID: 6227918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.