BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3003077)

  • 1. Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer.
    Carlberg I; Mannervik B
    J Biol Chem; 1986 Feb; 261(4):1629-35. PubMed ID: 3003077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of nicotinamide coenzyme dimers by one-electron-accepting proteins.
    Avigliano L; Carelli V; Casini A; Finazzi-Agrò A; Liberatore F; Rossi A
    Biochem J; 1986 Aug; 237(3):919-22. PubMed ID: 3026335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenodoxin reductase and adrenodoxin. Mechanisms of reduction of ferricyanide and cytochrome c.
    Lambeth JD; Kamin H
    J Biol Chem; 1977 May; 252(9):2908-17. PubMed ID: 16008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One- and two-electron reduction of quinones by glutathione reductase.
    Cénas NK; Rakauskiené GA; Kulys JJ
    Biochim Biophys Acta; 1989 Mar; 973(3):399-404. PubMed ID: 2647141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1992 May; 294(2):403-6. PubMed ID: 1314540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of acetaminophen-stimulated NADPH oxidation catalyzed by the peroxidase-H2O2 system.
    Keller RJ; Hinson JA
    Drug Metab Dispos; 1991; 19(1):184-7. PubMed ID: 1673396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of nitrite from the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by ferredoxin NADP oxidoreductase from spinach.
    Shah MM; Spain JC
    Biochem Biophys Res Commun; 1996 Mar; 220(3):563-8. PubMed ID: 8607804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme.
    Hossain MA; Asada K
    J Biol Chem; 1985 Oct; 260(24):12920-6. PubMed ID: 4055727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli flavohaemoglobin (Hmp) reduces cytochrome c and Fe(III)-hydroxamate K by electron transfer from NADH via FAD: sensitivity of oxidoreductase activity to haem-bound dioxygen.
    Poole RK; Rogers NJ; D'mello RAM; Hughes MN; Orii Y
    Microbiology (Reading); 1997 May; 143 ( Pt 5)():1557-1565. PubMed ID: 9168606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dinitrophenyl modification on oxidation-reduction of glutathione reductase from yeast.
    Maeda-Yorita K; Aki K
    J Biochem; 1985 Jun; 97(6):1795-801. PubMed ID: 4030749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonenzymic hydrogen transfer between reduced and oxidized pyridine nucleotides.
    Bernofsky C; Gallagher WJ
    Biochim Biophys Acta; 1981 May; 659(1):1-6. PubMed ID: 7248310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of rat testicular NADPH-cytochrome P-450 reductase by 2,4,6-trinitrobenzenesulfonate.
    Inano H; Kurihara S; Tamaoki B
    J Steroid Biochem; 1988 Feb; 29(2):227-32. PubMed ID: 3126367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of the reduction of yeast glutathione reductase by reduced nicotinamide hypoxanthine dinucleotide phosphate.
    Huber PW; Brandt KG
    Arch Biochem Biophys; 1985 Apr; 238(1):213-8. PubMed ID: 3885856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of trinitrobenzene sulfonic acid by the rat colon produces reactive oxygen species.
    Grisham MB; Volkmer C; Tso P; Yamada T
    Gastroenterology; 1991 Aug; 101(2):540-7. PubMed ID: 1648528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.