These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30031008)

  • 1. Stem cell rejuvenation and the role of autophagy in age retardation by caloric restriction: An update.
    Bi S; Wang H; Kuang W
    Mech Ageing Dev; 2018 Oct; 175():46-54. PubMed ID: 30031008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caloric restriction mitigates age-associated senescence characteristics in subcutaneous adipose tissue-derived stem cells.
    Chinnapaka S; Malekzadeh H; Tirmizi Z; Ejaz A
    Aging (Albany NY); 2024 May; 16(9):7535-7552. PubMed ID: 38728252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection.
    Pamplona R; Barja G
    Biochim Biophys Acta; 2006; 1757(5-6):496-508. PubMed ID: 16574059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay between mitochondria and autophagy and its role in the aging process.
    Schiavi A; Ventura N
    Exp Gerontol; 2014 Aug; 56():147-53. PubMed ID: 24607515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast as a model to study mitochondrial mechanisms in ageing.
    Barros MH; da Cunha FM; Oliveira GA; Tahara EB; Kowaltowski AJ
    Mech Ageing Dev; 2010; 131(7-8):494-502. PubMed ID: 20450928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caloric restriction and aging stem cells: the stick and the carrot?
    Mazzoccoli G; Tevy MF; Borghesan M; Delle Vergini MR; Vinciguerra M
    Exp Gerontol; 2014 Feb; 50():137-48. PubMed ID: 24211426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired quality control of mitochondria: aging from a new perspective.
    Weber TA; Reichert AS
    Exp Gerontol; 2010 Aug; 45(7-8):503-11. PubMed ID: 20451598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy Prevents Oxidative Stress-Induced Loss of Self-Renewal Capacity and Stemness in Human Tendon Stem Cells by Reducing ROS Accumulation.
    Chen H; Ge HA; Wu GB; Cheng B; Lu Y; Jiang C
    Cell Physiol Biochem; 2016; 39(6):2227-2238. PubMed ID: 27832632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caloric restriction: implications for sarcopenia and potential mechanisms.
    Xie WQ; Xiao WF; Tang K; Wu YX; Hu PW; Li YS; Duan Y; Lv S
    Aging (Albany NY); 2020 Nov; 12(23):24441-24452. PubMed ID: 33226962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction.
    Bergamini E; Cavallini G; Donati A; Gori Z
    Ann N Y Acad Sci; 2007 Oct; 1114():69-78. PubMed ID: 17934054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological mimicking of caloric restriction elicits epigenetic reprogramming of differentiated cells to stem-like self-renewal states.
    Oliveras-Ferraros C; Vazquez-Martin A; Menendez JA
    Rejuvenation Res; 2010 Oct; 13(5):519-26. PubMed ID: 21047255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rejuvenating Muscle Stem Cell Function: Restoring Quiescence and Overcoming Senescence.
    Mendelsohn AR; Larrick JW
    Rejuvenation Res; 2016 Apr; 19(2):182-6. PubMed ID: 27000748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression.
    Ntsapi C; Loos B
    Exp Gerontol; 2016 Oct; 83():97-111. PubMed ID: 27473756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage.
    Ning YC; Cai GY; Zhuo L; Gao JJ; Dong D; Cui S; Feng Z; Shi SZ; Bai XY; Sun XF; Chen XM
    Mech Ageing Dev; 2013; 134(11-12):570-9. PubMed ID: 24291536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of
    Yang C; Xia S; Zhang W; Shen HM; Wang J
    Autophagy; 2023 Feb; 19(2):706-715. PubMed ID: 35737739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an understanding of the anti-aging mechanism of caloric restriction.
    Cavallini G; Donati A; Gori Z; Bergamini E
    Curr Aging Sci; 2008 Mar; 1(1):4-9. PubMed ID: 20021367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial responsibility in ageing process: innocent, suspect or guilty.
    López-Lluch G; Santos-Ocaña C; Sánchez-Alcázar JA; Fernández-Ayala DJ; Asencio-Salcedo C; Rodríguez-Aguilera JC; Navas P
    Biogerontology; 2015 Oct; 16(5):599-620. PubMed ID: 26105157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast.
    Pan Y
    Exp Gerontol; 2011 Nov; 46(11):847-52. PubMed ID: 21884780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2005 Sep; 289(3):E429-38. PubMed ID: 15886224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.