BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 30031094)

  • 1. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical resolution of (+/-)-1-aryl-1-alkanols using enantioselective transesterification by lipases.
    Negi S; Umetsu K; Nishijo Y; Kano K; Nakamura K
    Enantiomer; 2000; 5(1):63-70. PubMed ID: 10763870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiopure 1,5-diols from dynamic kinetic asymmetric transformation. Useful synthetic intermediates for the preparation of chiral heterocycles.
    Leijondahl K; Borén L; Braun R; Bäckvall JE
    Org Lett; 2008 May; 10(10):2027-30. PubMed ID: 18402460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-catalyzed kinetic resolution of aryltrimethylsilyl chiral alcohols.
    Palmeira DJ; Abreu JC; Andrade LH
    Molecules; 2011 Nov; 16(11):9697-713. PubMed ID: 22113578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.
    Kim C; Lee J; Cho J; Oh Y; Choi YK; Choi E; Park J; Kim MJ
    J Org Chem; 2013 Mar; 78(6):2571-8. PubMed ID: 23406287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols.
    Xu T; Gao B; Zhang L; Lin J; Wang X; Wei D
    Biochim Biophys Acta; 2010 Dec; 1804(12):2183-90. PubMed ID: 20828637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation.
    Mathpati AC; Vyas VK; Bhanage BM
    J Biotechnol; 2017 Nov; 262():1-10. PubMed ID: 28958793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases.
    Sikora A; Siódmiak T; Marszałł MP
    Chirality; 2014 Oct; 26(10):663-9. PubMed ID: 25080075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation.
    Li N; Hu SB; Feng GY
    Biotechnol Lett; 2012 Jan; 34(1):153-8. PubMed ID: 21972142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions.
    Haeffner F; Norin T; Hult K
    Biophys J; 1998 Mar; 74(3):1251-62. PubMed ID: 9512023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1,2-propanediol derivatives.
    Tomić S; Kojić-Prodić B
    J Mol Graph Model; 2002 Dec; 21(3):241-52. PubMed ID: 12463642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of the expeditious potential of Pseudomonas fluorescens lipase in the kinetic resolution of racemic intermediates and its validation through molecular docking.
    Soni S; Dwivedee BP; Sharma VK; Patel G; Banerjee UC
    Chirality; 2018 Jan; 30(1):85-94. PubMed ID: 29064594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and Stable Magnetic Chitosan-Lipase B from
    Spelmezan CG; Bencze LC; Katona G; Irimie FD; Paizs C; Toșa MI
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31952168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-bonding-driven enantioselective resolution against the Kazlauskas rule to afford γ-amino alcohols by Candida rugosa lipase.
    Min B; Park J; Sim YK; Jung S; Kim SH; Song JK; Kim BT; Park SY; Yun J; Park S; Lee H
    Chembiochem; 2015 Jan; 16(1):77-82. PubMed ID: 25477295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective recognition mechanism of secondary alcohol by surfactant-coated lipases in nonaqueous media.
    Kamiya N; Kasagi H; Inoue M; Kusunoki K; Goto M
    Biotechnol Bioeng; 1999 Oct; 65(2):227-32. PubMed ID: 10458745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of delta-functional groups on the enantiorecognition of secondary alcohols by Candida antarctica lipase B.
    Nyhlén J; Martín-Matute B; Sandström AG; Bocola M; Bäckvall JE
    Chembiochem; 2008 Aug; 9(12):1968-74. PubMed ID: 18655082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.