These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30031238)

  • 1. Anisotropy of the electron spin-lattice relaxation. PO
    Hoffmann SK; Goslar J
    J Magn Reson; 2018 Sep; 294():93-100. PubMed ID: 30031238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin relaxation governed by Raman processes both for Cu²⁺ ions and carbonate radicals in KHCO₃ crystals: EPR and electron spin echo studies.
    Hoffmann SK; Goslar J; Lijewski S
    J Magn Reson; 2012 Aug; 221():120-8. PubMed ID: 22750640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron spin relaxation of exchange coupled pairs of transition metal ions in solids. Ti2+-Ti2+ pairs and single Ti2+ ions in SrF2 crystals.
    Hoffmann SK; Lijewski S; Goslar J; Ulanov VA
    J Magn Reson; 2010 Jan; 202(1):14-23. PubMed ID: 19857979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon spectrum, electron spin-lattice relaxation and spin-phonon coupling of Cu2+ ions in BaF2 crystal.
    Hoffmann SK; Lijewski S
    J Magn Reson; 2015 Mar; 252():49-54. PubMed ID: 25655450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals.
    Hoffmann SK; Lijewski S
    J Magn Reson; 2013 Feb; 227():51-6. PubMed ID: 23274344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.
    Lijewski S; Goslar J; Hoffmann SK
    J Phys Condens Matter; 2006 Jul; 18(26):6159-69. PubMed ID: 21690828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.
    Kundu K; Kattnig DR; Mladenova BY; Grampp G; Das R
    J Phys Chem B; 2015 Mar; 119(12):4501-11. PubMed ID: 25775000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex mechanism of relaxation in solid chloroxylenol (antibacterial/antifungal agent) studied by ¹H NMR spectroscopy and density functional theory calculations.
    Latosińska JN; Latosińska M; Tomczak MA; Medycki W
    J Phys Chem A; 2014 Mar; 118(12):2209-19. PubMed ID: 24628024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance local phonon mode and electron spin-lattice relaxation of formate-type free radicals studied by electron spin echo in Cd(HCOO)2·2H2O crystal.
    Hoffmann SK; Goslar J
    J Phys Condens Matter; 2015 Jul; 27(26):265402. PubMed ID: 26053705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome.
    Llinás M; Klein MP; Wüthrich K
    Biophys J; 1978 Dec; 24(3):849-62. PubMed ID: 737289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field dependence of proton spin-lattice relaxation times.
    Korb JP; Bryant RG
    Magn Reson Med; 2002 Jul; 48(1):21-6. PubMed ID: 12111928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy of the proton T1 and the low-field relaxation in NH4 ClO4 below 20K.
    Birczyn'ski A; Lalowicz ZT; Olejniczak Z; Punkkinen M
    Solid State Nucl Magn Reson; 1996 Nov; 7(2):105-19. PubMed ID: 8986023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glassy modes on electron spin-lattice relaxation in solid ethanol.
    Merunka D; Kveder M; Jokić M; Rakvin B
    J Magn Reson; 2013 Mar; 228():50-8. PubMed ID: 23357426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the [2Fe-2S](2+) Rieske cluster in cytochrome bc(1).
    Sarewicz M; Dutka M; Pietras R; Borek A; Osyczka A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25297-308. PubMed ID: 26355649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K.
    Fielding AJ; Fox S; Millhauser GL; Chattopadhyay M; Kroneck PM; Fritz G; Eaton GR; Eaton SS
    J Magn Reson; 2006 Mar; 179(1):92-104. PubMed ID: 16343958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the phosphate group in phospholipid bilayers. A 31P angular dependent nuclear spin relaxation time study.
    Milburn MP; Jeffrey KR
    Biophys J; 1989 Sep; 56(3):543-9. PubMed ID: 2790137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new mechanism for spin--lattice relaxation of heavy nuclei in the solid state: 207Pb relaxation in lead nitrate.
    Grutzner JB; Stewart KW; Wasylishen RE; Lumsden MD; Dybowski C; Beckmann PA
    J Am Chem Soc; 2001 Jul; 123(29):7094-100. PubMed ID: 11459488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron spin relaxation of a boron-containing heterocyclic radical.
    Eaton SS; Huber K; Elajaili H; McPeak J; Eaton GR; Longobardi LE; Stephan DW
    J Magn Reson; 2017 Mar; 276():7-13. PubMed ID: 28081476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear Magnetic Resonance characterization of traditional homeopathically manufactured copper (Cuprum metallicum) and plant (Gelsemium sempervirens) medicines and controls.
    Van Wassenhoven M; Goyens M; Henry M; Capieaux E; Devos P
    Homeopathy; 2017 Nov; 106(4):223-239. PubMed ID: 29157472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.