These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 30031304)

  • 1. Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device.
    Chueh BH; Zheng Y; Torisawa YS; Hsiao AY; Ge C; Hsiong S; Huebsch N; Franceschi R; Mooney DJ; Takayama S
    Biomed Microdevices; 2010 Feb; 12(1):145-51. PubMed ID: 19830565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.
    White JC; Stoppel WL; Roberts SC; Bhatia SR
    J Biomed Mater Res A; 2013 Feb; 101(2):438-46. PubMed ID: 22865503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model.
    Cavo M; Fato M; Peñuela L; Beltrame F; Raiteri R; Scaglione S
    Sci Rep; 2016 Oct; 6():35367. PubMed ID: 27734939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of calcium alginate matrices by means of mechanical and release tests.
    Grassi M; Sandolo C; Perin D; Coviello T; Lapasin R; Grassi G
    Molecules; 2009 Aug; 14(8):3003-17. PubMed ID: 19701141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems.
    Laurén P; Somersalo P; Pitkänen I; Lou YR; Urtti A; Partanen J; Seppälä J; Madetoja M; Laaksonen T; Mäkitie A; Yliperttula M
    PLoS One; 2017; 12(8):e0183487. PubMed ID: 28829830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional core-shell alginate microsphere for cancer hypoxia simulation
    Ruan Y; He L; Chen J; Wang J; Zhao S; Guo X; Xie Y; Cai Z; Shen X; Li C
    Front Bioeng Biotechnol; 2023; 11():1174206. PubMed ID: 37113672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Biomaterials in Three-Dimensional Culturing of Cancer Cells.
    Hanasti N; Faridah L; Fibriani A; Wiraswati HL; Kusumawaty D; Ekawardhani S
    Curr Issues Mol Biol; 2023 Jan; 45(2):1100-1112. PubMed ID: 36826018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies.
    Esmaeili J; Barati A; Ai J; Nooshabadi VT; Mirzaei Z
    RSC Adv; 2021 Mar; 11(18):10646-10669. PubMed ID: 35423538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic response to radiation therapy in cancer.
    Read GH; Bailleul J; Vlashi E; Kesarwala AH
    Mol Carcinog; 2022 Feb; 61(2):200-224. PubMed ID: 34961986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Changes Induced in Melanoma by Cell Culturing in 3D Alginate Hydrogels.
    Kappelmann-Fenzl M; Schmidt SK; Fischer S; Schmid R; Lämmerhirt L; Fischer L; Schrüfer S; Thievessen I; Schubert DW; Matthies A; Detsch R; Boccaccini AR; Arkudas A; Kengelbach-Weigand A; Bosserhoff AK
    Cancers (Basel); 2021 Aug; 13(16):. PubMed ID: 34439267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pancreatic Tumor Microenvironment Factor Promotes Cancer Stemness via SPP1-CD44 Axis.
    Nallasamy P; Nimmakayala RK; Karmakar S; Leon F; Seshacharyulu P; Lakshmanan I; Rachagani S; Mallya K; Zhang C; Ly QP; Myers MS; Josh L; Grabow CE; Gautam SK; Kumar S; Lele SM; Jain M; Batra SK; Ponnusamy MP
    Gastroenterology; 2021 Dec; 161(6):1998-2013.e7. PubMed ID: 34418441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breast cancer models: Engineering the tumor microenvironment.
    Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P
    Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior.
    Northcutt LA; Suarez-Arnedo A; Rafat M
    Ann Biomed Eng; 2020 Jul; 48(7):2064-2077. PubMed ID: 31617045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional alginate hydrogels for radiobiological and metabolic studies of cancer cells.
    Read GH; Miura N; Carter JL; Kines KT; Yamamoto K; Devasahayam N; Cheng JY; Camphausen KA; Krishna MC; Kesarwala AH
    Colloids Surf B Biointerfaces; 2018 Nov; 171():197-204. PubMed ID: 30031304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties.
    Jeon O; Bouhadir KH; Mansour JM; Alsberg E
    Biomaterials; 2009 May; 30(14):2724-34. PubMed ID: 19201462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture.
    Ashton RS; Banerjee A; Punyani S; Schaffer DV; Kane RS
    Biomaterials; 2007 Dec; 28(36):5518-25. PubMed ID: 17881048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels for in vivo-like three-dimensional cellular studies.
    DeVolder R; Kong HJ
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(4):351-65. PubMed ID: 22615143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate-chitosan-gelatin hydrogels with surface neuron growth factor.
    Kuo YC; Wang CC
    Colloids Surf B Biointerfaces; 2013 Apr; 104():194-9. PubMed ID: 23369755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro porcine blastocyst development in three-dimensional alginate hydrogels.
    Miles JR; Laughlin TD; Sargus-Patino CN; Pannier AK
    Mol Reprod Dev; 2017 Sep; 84(9):775-787. PubMed ID: 28407335
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.