These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30031310)

  • 1. Unraveling microbial turnover and non-extractable residues of bromoxynil in soil microcosms with
    Nowak KM; Telscher M; Seidel E; Miltner A
    Environ Pollut; 2018 Nov; 242(Pt A):769-777. PubMed ID: 30031310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bromoxynil residues and dissipation rates in maize crops and soil.
    Chen XX; Li WM; Wu Q; Zhi YN; Han LJ
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1659-63. PubMed ID: 21680020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature, pH and total organic carbon variations on microbial turnover of
    Muskus AM; Krauss M; Miltner A; Hamer U; Nowak KM
    Sci Total Environ; 2019 Mar; 658():697-707. PubMed ID: 30580222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Identification of Biogenic Nonextractable Pesticide Residues in Soil by (14)C-Analysis.
    Poßberg C; Schmidt B; Nowak K; Telscher M; Lagojda A; Schaeffer A
    Environ Sci Technol; 2016 Jun; 50(12):6415-22. PubMed ID: 27192605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and fate of bound residues from microbial biomass during 2,4-D degradation in soil.
    Nowak KM; Miltner A; Gehre M; Schäffer A; Kästner M
    Environ Sci Technol; 2011 Feb; 45(3):999-1006. PubMed ID: 21186826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of humic fractions on retention of isoproturon residues in two Moroccan soils.
    Elkhattabi K; Bouhaouss A; Scrano L; Lelario F; Bufo SA
    J Environ Sci Health B; 2007; 42(7):851-6. PubMed ID: 17763043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bromoxynil degradation in a Mississippi silt loam soil.
    Zablotowicz RM; Krutz LJ; Accinelli C; Reddy KN
    Pest Manag Sci; 2009 Jun; 65(6):658-64. PubMed ID: 19288470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant litter enhances degradation of the herbicide MCPA and increases formation of biogenic non-extractable residues in soil.
    Nowak KM; Miltner A; Poll C; Kandeler E; Streck T; Pagel H
    Environ Int; 2020 Sep; 142():105867. PubMed ID: 32585504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on bound (14)C-chlorsulfuron residues in soil.
    Guo J; Sun J
    J Agric Food Chem; 2002 Apr; 50(8):2278-82. PubMed ID: 11929284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 14C-atrazine bound residues in brown soil and rendzina fractions.
    Munier-Lamy C; Feuvrier MP; Choné T
    J Environ Qual; 2002; 31(1):241-7. PubMed ID: 11837428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of metamitron in water-sediment systems: Detailed insight into the biodegradation processes.
    Wang S; Miltner A; Kästner M; Schäffer A; Nowak KM
    Sci Total Environ; 2017 Feb; 578():100-108. PubMed ID: 27839759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of degradation routes of metamitron in soil microcosms using
    Wang S; Miltner A; Nowak KM
    Environ Pollut; 2017 Jan; 220(Pt B):927-935. PubMed ID: 27823863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil.
    Nowak KM; Girardi C; Miltner A; Gehre M; Schäffer A; Kästner M
    Sci Total Environ; 2013 Feb; 445-446():377-84. PubMed ID: 23361042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation, classification and identification of non-extractable residues of
    Claßen D; Siedt M; Nguyen KT; Ackermann J; Schaeffer A
    Chemosphere; 2019 Oct; 232():164-170. PubMed ID: 31154176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues.
    Zhu X; Schroll R; Dörfler U; Chen B
    Ecotoxicol Environ Saf; 2018 Mar; 149():182-189. PubMed ID: 29175344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence.
    Schäffer A; Kästner M; Trapp S
    Environ Sci Eur; 2018; 30(1):51. PubMed ID: 30613459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH.
    Muskus AM; Krauss M; Miltner A; Hamer U; Nowak KM
    Environ Pollut; 2020 Apr; 259():113767. PubMed ID: 31887598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of 2,4,6-Tribromophenol in Soil Under Different Redox Conditions.
    Jia X; Wang W; Yao Y; He Y; Corvini PF; Ji R
    Bull Environ Contam Toxicol; 2020 May; 104(5):707-713. PubMed ID: 32222794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues.
    Brock AL; Kästner M; Trapp S
    SAR QSAR Environ Res; 2017 Aug; 28(8):629-650. PubMed ID: 28893109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic fate of the (14)C-labeled herbicide clodinafop-propargyl in a sediment-water system.
    Yuan Y; Weitzel P; Schäffer A; Schmidt B
    J Environ Sci Health B; 2015; 50(8):533-43. PubMed ID: 26065513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.