These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30031407)

  • 1. Benchmarking the Energy Intensity of Small Water Resource Recovery Facilities.
    Hanna SM; Thompson MJ; Dahab MF; Williams RE; Dvorak BI
    Water Environ Res; 2018 Aug; 90(8):738-747. PubMed ID: 30031407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.
    Aymerich I; Rieger L; Sobhani R; Rosso D; Corominas L
    Water Res; 2015 Sep; 81():113-23. PubMed ID: 26048700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling energy costs for different operational strategies of a large water resource recovery facility.
    Póvoa P; Oehmen A; Inocêncio P; Matos JS; Frazão A
    Water Sci Technol; 2017 May; 75(9-10):2139-2148. PubMed ID: 28498126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking of energy consumption in municipal wastewater treatment plants - a survey of over 200 plants in Italy.
    Vaccari M; Foladori P; Nembrini S; Vitali F
    Water Sci Technol; 2018 May; 77(9-10):2242-2252. PubMed ID: 29757176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the use of sludge treatment facilities at municipal WWTPs.
    Nowak O
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1807-17. PubMed ID: 16849127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.
    Foladori P; Vaccari M; Vitali F
    Water Sci Technol; 2015; 72(6):1007-15. PubMed ID: 26360762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitfalls in international benchmarking of energy intensity across wastewater treatment utilities.
    Walker NL; Williams AP; Styles D
    J Environ Manage; 2021 Dec; 300():113613. PubMed ID: 34560465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demand response through reject water scheduling in water resource recovery facilities: A demonstration with BSM2.
    Liu Q; Dereli RK; Flynn D; Casey E
    Water Res; 2021 Jan; 188():116516. PubMed ID: 33096515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental Life Cycle Assessment of small water resource recovery facilities: Comparison of mechanical and lagoon systems.
    Thompson M; Moussavi S; Li S; Barutha P; Dvorak B
    Water Res; 2022 May; 215():118234. PubMed ID: 35272226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy benchmarking in wastewater treatment plants: the importance of site operation and layout.
    Belloir C; Stanford C; Soares A
    Environ Technol; 2015; 36(1-4):260-9. PubMed ID: 25413121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life-cycle impacts of shower water waste heat recovery: case study of an installation at a university sport facility in the UK.
    Ip K; She K; Adeyeye K
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19247-19258. PubMed ID: 29047063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities.
    Zhao G; Garrido-Baserba M; Reifsnyder S; Xu JC; Rosso D
    Sci Total Environ; 2019 May; 665():762-773. PubMed ID: 30790749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sieving wastewater--cellulose recovery, economic and energy evaluation.
    Ruiken CJ; Breuer G; Klaversma E; Santiago T; van Loosdrecht MC
    Water Res; 2013 Jan; 47(1):43-8. PubMed ID: 23121895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking of municipal waste water treatment plants (an Austrian project).
    Lindtner S; Kroiss H; Nowak O
    Water Sci Technol; 2004; 50(7):265-71. PubMed ID: 15553485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a benchmarking model for winery wastewater treatment and disposal.
    Aybar M; Carvallo M; Fabacher F; Pizarro G; Pastén P
    Water Sci Technol; 2007; 56(2):153-60. PubMed ID: 17849990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2016 Oct; 88(10):1279-98. PubMed ID: 27620091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking the scientific research on wastewater-energy nexus by using bibliometric analysis.
    Zheng T; Li P; Shi Z; Liu J
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27613-27630. PubMed ID: 29134520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low cost reclamation using the Advanced Integrated Wastewater Pond Systems Technology and reverse osmosis.
    Downing JB; Bracco E; Green FB; Ku AY; Lundquist TJ; Zubieta IX; Oswald WJ
    Water Sci Technol; 2002; 45(1):117-25. PubMed ID: 11833725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying fine bubble aeration to small aeration tanks.
    Duchène P; Cotteux E; Capela S
    Water Sci Technol; 2001; 44(2-3):203-10. PubMed ID: 11547985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling, instrumentation, automation, and optimization of water resource recovery facilities (2019) DIRECT.
    Sweeney M; Kabouris J
    Water Environ Res; 2020 Oct; 92(10):1499-1503. PubMed ID: 32639061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.