BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30031757)

  • 21. Mitochondrial phylogeography and molecular evolution of the rhodopsin visual pigment in troglobitic populations of
    Garduño-Sánchez MAA; De Jesus-Bonilla V; Perea S; Miranda-Gamboa R; Herrera-García A; De la Maza Benignos M; Ornelas-García CP
    Zool Res; 2023 Jul; 44(4):761-775. PubMed ID: 37464933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cavefish as a model system in evolutionary developmental biology.
    Jeffery WR
    Dev Biol; 2001 Mar; 231(1):1-12. PubMed ID: 11180948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele.
    Gross JB; Wilkens H
    Heredity (Edinb); 2013 Aug; 111(2):122-30. PubMed ID: 23572122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioural changes controlled by catecholaminergic systems explain recurrent loss of pigmentation in cavefish.
    Bilandžija H; Abraham L; Ma L; Renner KJ; Jeffery WR
    Proc Biol Sci; 2018 May; 285(1878):. PubMed ID: 29720416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel evolution of regressive and constructive craniofacial traits across distinct populations of Astyanax mexicanus cavefish.
    Powers AK; Berning DJ; Gross JB
    J Exp Zool B Mol Dev Evol; 2020 Nov; 334(7-8):450-462. PubMed ID: 32030873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regressive evolution in the Mexican cave tetra, Astyanax mexicanus.
    Protas M; Conrad M; Gross JB; Tabin C; Borowsky R
    Curr Biol; 2007 Mar; 17(5):452-4. PubMed ID: 17306543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogeographic relationships and morphological evolution between cave and surface Astyanax mexicanus populations (De Filippi 1853) (Actinopterygii, Characidae).
    Garduño-Sánchez M; Hernández-Lozano J; Moran RL; Miranda-Gamboa R; Gross JB; Rohner N; Elliott WR; Miller J; Lozano-Vilano L; McGaugh SE; Ornelas-García CP
    Mol Ecol; 2023 Oct; 32(20):5626-5644. PubMed ID: 37712324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus).
    Bradic M; Beerli P; García-de León FJ; Esquivel-Bobadilla S; Borowsky RL
    BMC Evol Biol; 2012 Jan; 12():9. PubMed ID: 22269119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract.
    Riddle MR; Boesmans W; Caballero O; Kazwiny Y; Tabin CJ
    Dev Biol; 2018 Sep; 441(2):285-296. PubMed ID: 29883660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus.
    Dowling TE; Martasian DP; Jeffery WR
    Mol Biol Evol; 2002 Apr; 19(4):446-55. PubMed ID: 11919286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus.
    Xiong S; Krishnan J; Peuß R; Rohner N
    Dev Biol; 2018 Sep; 441(2):297-304. PubMed ID: 29883659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensing in the dark: Constructive evolution of the lateral line system in blind populations of
    Rodríguez-Morales R
    Ecol Evol; 2024 Apr; 14(4):e11286. PubMed ID: 38654714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions.
    Aspiras AC; Rohner N; Martineau B; Borowsky RL; Tabin CJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9668-73. PubMed ID: 26170297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish.
    Fumey J; Hinaux H; Noirot C; Thermes C; Rétaux S; Casane D
    BMC Evol Biol; 2018 Apr; 18(1):43. PubMed ID: 29665771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The population genomics of repeated evolution in the blind cavefish Astyanax mexicanus.
    Bradic M; Teotónio H; Borowsky RL
    Mol Biol Evol; 2013 Nov; 30(11):2383-400. PubMed ID: 23927992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome.
    Elipot Y; Hinaux H; Callebert J; Launay JM; Blin M; Rétaux S
    Nat Commun; 2014 Apr; 5():3647. PubMed ID: 24717983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Mexican Tetra,
    Ponnimbaduge Perera P; Perez Guerra D; Riddle MR
    Annu Rev Cell Dev Biol; 2023 Oct; 39():23-44. PubMed ID: 37437210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait variation discovery.
    Warren WC; Rice ES; X M; Roback E; Keene A; Martin F; Ogeh D; Haggerty L; Carroll RA; McGaugh S; Rohner N
    G3 (Bethesda); 2024 May; ():. PubMed ID: 38771704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait variation discovery.
    Warren WC; Rice ES; Maggs X; Roback E; Keene A; Martin F; Ogeh D; Haggerty L; Carroll RA; McGaugh S; Rohner N
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci.
    Gross JB; Krutzler AJ; Carlson BM
    Genetics; 2014 Apr; 196(4):1303-19. PubMed ID: 24496009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.