BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30031757)

  • 61. An epigenetic mechanism for cavefish eye degeneration.
    Gore AV; Tomins KA; Iben J; Ma L; Castranova D; Davis AE; Parkhurst A; Jeffery WR; Weinstein BM
    Nat Ecol Evol; 2018 Jul; 2(7):1155-1160. PubMed ID: 29807993
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization and comparison of activity profiles exhibited by the cave and surface morphotypes of the blind Mexican tetra, Astyanax mexicanus.
    Carlson BM; Gross JB
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Jun; 208():114-129. PubMed ID: 28823830
    [TBL] [Abstract][Full Text] [Related]  

  • 63. CaveCrawler: an interactive analysis suite for cavefish bioinformatics.
    Perry A; McGaugh SE; Keene AC; Blackmon H
    G3 (Bethesda); 2022 Jul; 12(8):. PubMed ID: 35708643
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism.
    Protas ME; Hersey C; Kochanek D; Zhou Y; Wilkens H; Jeffery WR; Zon LI; Borowsky R; Tabin CJ
    Nat Genet; 2006 Jan; 38(1):107-11. PubMed ID: 16341223
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Craniofacial skeleton of MEXICAN tetra (Astyanax mexicanus): As a bone disease model.
    Atukorala ADS; Bhatia V; Ratnayake R
    Dev Dyn; 2019 Feb; 248(2):153-161. PubMed ID: 30450697
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and an adaptive foraging behavior.
    Fernandes VFL; Macaspac C; Lu L; Yoshizawa M
    Dev Biol; 2018 Sep; 441(2):262-271. PubMed ID: 29782817
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phylogeography of surface and cave Astyanax (Teleostei) from Central and North America based on cytochrome b sequence data.
    Strecker U; Faúndez VH; Wilkens H
    Mol Phylogenet Evol; 2004 Nov; 33(2):469-81. PubMed ID: 15336680
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evolution of albinism in cave planthoppers by a convergent defect in the first step of melanin biosynthesis.
    Bilandžija H; Cetković H; Jeffery WR
    Evol Dev; 2012; 14(2):196-203. PubMed ID: 23017027
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A high-density linkage map for Astyanax mexicanus using genotyping-by-sequencing technology.
    Carlson BM; Onusko SW; Gross JB
    G3 (Bethesda); 2014 Dec; 5(2):241-51. PubMed ID: 25520037
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A reference genome for the Andean cavefish Trichomycterus rosablanca (Siluriformes, Trichomycteridae): Building genomic resources to study evolution in cave environments.
    Cadena CD; Pabón L; DoNascimiento C; Abueg L; Tilley T; O-Toole B; Absolon D; Sims Y; Formenti G; Fedrigo O; Jarvis ED; Torres M
    J Hered; 2024 May; 115(3):311-316. PubMed ID: 38513109
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Manipulation of Gene Function in Mexican Cavefish.
    Stahl BA; Jaggard JB; Chin JSR; Kowalko JE; Keene AC; Duboué ER
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31058898
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Astyanax mexicanus, the Blind Mexican Cave Fish: A Model for Studies in Development and Morphology.
    Borowsky R
    CSH Protoc; 2008 Nov; 2008():pdb.emo107. PubMed ID: 21356710
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genome-wide analysis of cis-regulatory changes underlying metabolic adaptation of cavefish.
    Krishnan J; Seidel CW; Zhang N; Singh NP; VanCampen J; Peuß R; Xiong S; Kenzior A; Li H; Conaway JW; Rohner N
    Nat Genet; 2022 May; 54(5):684-693. PubMed ID: 35551306
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs).
    Kowalko JE; Ma L; Jeffery WR
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27404092
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microbiome differences between river-dwelling and cave-adapted populations of the fish
    Ornelas-García P; Pajares S; Sosa-Jiménez VM; Rétaux S; Miranda-Gamboa RA
    PeerJ; 2018; 6():e5906. PubMed ID: 30425894
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The metabolome of Mexican cavefish shows a convergent signature highlighting sugar, antioxidant, and Ageing-Related metabolites.
    Medley JK; Persons J; Biswas T; Olsen L; Peuß R; Krishnan J; Xiong S; Rohner N
    Elife; 2022 Jun; 11():. PubMed ID: 35703366
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The developmental origin of heart size and shape differences in Astyanax mexicanus populations.
    Tang JLY; Guo Y; Stockdale WT; Rana K; Killen AC; Mommersteeg MTM; Yamamoto Y
    Dev Biol; 2018 Sep; 441(2):272-284. PubMed ID: 29940142
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genomic Analysis of the Only Blind Cichlid Reveals Extensive Inactivation in Eye and Pigment Formation Genes.
    Aardema ML; Stiassny MLJ; Alter SE
    Genome Biol Evol; 2020 Aug; 12(8):1392-1406. PubMed ID: 32653909
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Genes, modules and the evolution of cave fish.
    Wilkens H
    Heredity (Edinb); 2010 Nov; 105(5):413-22. PubMed ID: 20068586
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transcriptomics reveals the molecular processes of light-induced rapid darkening of the non-obligate cave dweller Oreolalax rhodostigmatus (Megophryidae, Anura) and their genetic basis of pigmentation strategy.
    Zhu W; Liu L; Wang X; Gao X; Jiang J; Wang B
    BMC Genomics; 2018 May; 19(1):422. PubMed ID: 29855256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.