BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30031850)

  • 1. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae.
    Zhang C; Liu J; Zhao F; Lu C; Zhao GR; Lu W
    Metab Eng; 2018 Sep; 49():28-35. PubMed ID: 30031850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zingiber zerumbet CYP71BA1 catalyzes the conversion of α-humulene to 8-hydroxy-α-humulene in zerumbone biosynthesis.
    Yu F; Okamoto S; Harada H; Yamasaki K; Misawa N; Utsumi R
    Cell Mol Life Sci; 2011 Mar; 68(6):1033-40. PubMed ID: 20730551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.
    Meng X; Liu H; Xu W; Zhang W; Wang Z; Liu W
    Microb Cell Fact; 2020 Feb; 19(1):21. PubMed ID: 32013959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.
    Sonntag F; Kroner C; Lubuta P; Peyraud R; Horst A; Buchhaupt M; Schrader J
    Metab Eng; 2015 Nov; 32():82-94. PubMed ID: 26369439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C; Li M; Zhao GR; Lu W
    Microb Cell Fact; 2019 Sep; 18(1):160. PubMed ID: 31547812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production.
    Zhang C; Li M; Zhao GR; Lu W
    J Agric Food Chem; 2020 Feb; 68(5):1382-1389. PubMed ID: 31944688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A short-chain dehydrogenase involved in terpene metabolism from Zingiber zerumbet.
    Okamoto S; Yu F; Harada H; Okajima T; Hattan J; Misawa N; Utsumi R
    FEBS J; 2011 Aug; 278(16):2892-900. PubMed ID: 21668645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Effects of Plant Growth Regulators and Elicitors on α-Humulene and Zerumbone Production in
    Alwakil NH; Mohamad Annuar MS; Jalil M
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897918
    [No Abstract]   [Full Text] [Related]  

  • 9. High-titer production of 13R-manoyl oxide in metabolically engineered Saccharomyces cerevisiae.
    Zhang C; Ju H; Lu CZ; Zhao F; Liu J; Guo X; Wu Y; Zhao GR; Lu W
    Microb Cell Fact; 2019 Apr; 18(1):73. PubMed ID: 31018856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode.
    Scalcinati G; Knuf C; Partow S; Chen Y; Maury J; Schalk M; Daviet L; Nielsen J; Siewers V
    Metab Eng; 2012 Mar; 14(2):91-103. PubMed ID: 22330799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Metabolic Rewiring of Yeast Enables Overproduction of Sesquiterpene (+)-Valencene.
    Cao C; Cao X; Yu W; Chen Y; Lin X; Zhu B; Zhou YJ
    J Agric Food Chem; 2022 Jun; 70(23):7180-7187. PubMed ID: 35657170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioproduction of α-humulene in metabolically engineered
    Alemdar S; König JC; Hartwig S; Frister T; Scheper T; Beutel S
    Eng Life Sci; 2017 Aug; 17(8):900-907. PubMed ID: 32624838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the sesquiterpene synthase AcTPS1 and high production of (-)-germacrene D in metabolically engineered Saccharomyces cerevisiae.
    Liu J; Chen C; Wan X; Yao G; Bao S; Wang F; Wang K; Song T; Han P; Jiang H
    Microb Cell Fact; 2022 May; 21(1):89. PubMed ID: 35585553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction.
    Zhang L; Yang H; Xia Y; Shen W; Liu L; Li Q; Chen X
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):59. PubMed ID: 35619177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound.
    Nguyen AD; Kim D; Lee EY
    Metab Eng; 2020 Sep; 61():69-78. PubMed ID: 32387228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High production of valencene in Saccharomyces cerevisiae through metabolic engineering.
    Chen H; Zhu C; Zhu M; Xiong J; Ma H; Zhuo M; Li S
    Microb Cell Fact; 2019 Nov; 18(1):195. PubMed ID: 31699116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic profiling of Zingiber zerumbet following Pythium myriotylum infection: investigations on the defensive role of the principal secondary metabolite, zerumbone.
    Keerthi D; Geethu C; Nair RA; Pillai P
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2593-603. PubMed ID: 24414941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith).
    Yu F; Okamto S; Nakasone K; Adachi K; Matsuda S; Harada H; Misawa N; Utsumi R
    Planta; 2008 May; 227(6):1291-9. PubMed ID: 18273640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.
    Wriessnegger T; Augustin P; Engleder M; Leitner E; Müller M; Kaluzna I; Schürmann M; Mink D; Zellnig G; Schwab H; Pichler H
    Metab Eng; 2014 Jul; 24():18-29. PubMed ID: 24747046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.