BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30031951)

  • 1. In silico identification and analysis of the binding site for aminocoumarin type inhibitors in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2018 Sep; 84():215-235. PubMed ID: 30031951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.
    Donnelly A; Blagg BS
    Curr Med Chem; 2008; 15(26):2702-17. PubMed ID: 18991631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: a plausible therapeutic approach in Alzheimer's disease.
    Khalid S; Paul S
    Med Hypotheses; 2014 Jul; 83(1):39-46. PubMed ID: 24785461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.
    Goode KM; Petrov DP; Vickman RE; Crist SA; Pascuzzi PE; Ratliff TL; Davisson VJ; Hazbun TR
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1992-2006. PubMed ID: 28495207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the In-silico Design of New HSP90 Inhibitors: Molecular Docking and 3D-QSAR CoMFA Studies of Tetrahydropyrido [4, 3-d] Pyrimidine Derivatives as HSP90 Inhibitors.
    Sepehri B; Ghavami R
    Med Chem; 2018; 14(5):439-450. PubMed ID: 29564982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in silico identification of potent anti-cancer agents by targeting the ATP binding site of the N-domain of HSP90.
    Sepehri B; Rezaei M; Ghavami R
    SAR QSAR Environ Res; 2018 Jul; 29(7):551-565. PubMed ID: 30058412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the ATP-binding sites of Hsp90 by nucleotide affinity cleavage: a distinct nucleotide specificity of the C-terminal ATP-binding site.
    Soti C; Vermes A; Haystead TA; Csermely P
    Eur J Biochem; 2003 Jun; 270(11):2421-8. PubMed ID: 12755697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural ensemble-based docking simulation and biophysical studies discovered new inhibitors of Hsp90 N-terminal domain.
    Kim HH; Hyun JS; Choi J; Choi KE; Jee JG; Park SJ
    Sci Rep; 2018 Jan; 8(1):368. PubMed ID: 29321504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling.
    D'Annessa I; Moroni E; Colombo G
    J Mol Biol; 2021 Jan; 433(2):166728. PubMed ID: 33275968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of coumermycin A1 analogues that inhibit the Hsp90 protein folding machinery.
    Burlison JA; Blagg BS
    Org Lett; 2006 Oct; 8(21):4855-8. PubMed ID: 17020320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico identification of potential Hsp90 inhibitors via ensemble docking, DFT and molecular dynamics simulations.
    Rezvani S; Ebadi A; Razzaghi-Asl N
    J Biomol Struct Dyn; 2022; 40(21):10665-10676. PubMed ID: 34286666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting silibinin as a novobiocin-like Hsp90 C-terminal inhibitor: Computational modeling and experimental validation.
    Cuyàs E; Verdura S; Micol V; Joven J; Bosch-Barrera J; Encinar JA; Menendez JA
    Food Chem Toxicol; 2019 Oct; 132():110645. PubMed ID: 31254591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain.
    Zhang H; Zhou C; Chen W; Xu Y; Shi Y; Wen Y; Zhang N
    Sci Rep; 2015 Apr; 5():9542. PubMed ID: 25867902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain.
    Garnier C; Lafitte D; Tsvetkov PO; Barbier P; Leclerc-Devin J; Millot JM; Briand C; Makarov AA; Catelli MG; Peyrot V
    J Biol Chem; 2002 Apr; 277(14):12208-14. PubMed ID: 11805114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential C-terminal-domain inhibitors of heat shock protein 90 derived from a C-terminal peptide helix.
    Gavenonis J; Jonas NE; Kritzer JA
    Bioorg Med Chem; 2014 Aug; 22(15):3989-93. PubMed ID: 24984936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Novel Hsp90 C-Terminal Inhibitors Using 3D-Pharmacophores Derived from Molecular Dynamics Simulations.
    Tomašič T; Durcik M; Keegan BM; Skledar DG; Zajec Ž; Blagg BSJ; Bryant SD
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-QSAR, molecular docking, and molecular dynamic simulations for prediction of new Hsp90 inhibitors based on isoxazole scaffold.
    Abbasi M; Sadeghi-Aliabadi H; Amanlou M
    J Biomol Struct Dyn; 2018 May; 36(6):1463-1478. PubMed ID: 28482755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Structural View of a Peptide Interacting with the Nucleotide Binding Domain of Heat Shock Protein 90.
    Raman S; Singh M; Tatu U; Suguna K
    Sci Rep; 2015 Nov; 5():17015. PubMed ID: 26599366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.