These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30032004)

  • 1. Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry.
    Carry E; Zhao D; Mogno I; Faith J; Ho L; Villani T; Patel H; Pasinetti GM; Simon JE; Wu Q
    J Pharm Biomed Anal; 2018 Sep; 159():374-383. PubMed ID: 30032004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of an ultra-high performance liquid chromatography/triple quadrupole mass spectrometry method for analyzing microbial-derived grape polyphenol metabolites.
    Zhao D; Yuan B; Carry E; Pasinetti GM; Ho L; Faith J; Mogno I; Simon J; Wu Q
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():34-45. PubMed ID: 30241072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and application of liquid-liquid extraction combined with gas chromatography-mass spectrometry for the analysis of phenolic acids from grape polyphenols degraded by human faecal microbiota.
    Muñoz-González C; Moreno-Arribas MV; Rodríguez-Bencomo JJ; Cueva C; Martín Álvarez PJ; Bartolomé B; Pozo-Bayón MA
    Food Chem; 2012 Jul; 133(2):526-35. PubMed ID: 25683429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.
    Aura AM; Mattila I; Hyötyläinen T; Gopalacharyulu P; Cheynier V; Souquet JM; Bes M; Le Bourvellec C; Guyot S; Orešič M
    Eur J Nutr; 2013 Mar; 52(2):833-46. PubMed ID: 22699306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid method to determine colonic microbial metabolites derived from grape flavanols in rat plasma by liquid chromatography-tandem mass spectrometry.
    Margalef M; Pons Z; Muguerza B; Arola-Arnal A
    J Agric Food Chem; 2014 Aug; 62(31):7698-706. PubMed ID: 25069016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method development with high-throughput enhanced matrix removal followed by UHPLC-QqQ-MS/MS for analysis of grape polyphenol metabolites in human urine.
    Lyu W; Yin Z; Xie L; Pasinetti GM; Murrough JW; Marchidan M; Karpman E; Dobbs M; Ferruzzi MG; Simon JE; Wu Q
    J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Jul; 1242():124189. PubMed ID: 38880055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey of polyphenol constituents in grapes and grape-derived products.
    Xu Y; Simon JE; Welch C; Wightman JD; Ferruzzi MG; Ho L; Pasinetti GM; Wu Q
    J Agric Food Chem; 2011 Oct; 59(19):10586-93. PubMed ID: 21879745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of grape and red wine polyphenols on gut microbiota - A systematic review.
    Nash V; Ranadheera CS; Georgousopoulou EN; Mellor DD; Panagiotakos DB; McKune AJ; Kellett J; Naumovski N
    Food Res Int; 2018 Nov; 113():277-287. PubMed ID: 30195522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans.
    Castello F; Costabile G; Bresciani L; Tassotti M; Naviglio D; Luongo D; Ciciola P; Vitale M; Vetrani C; Galaverna G; Brighenti F; Giacco R; Del Rio D; Mena P
    Arch Biochem Biophys; 2018 May; 646():1-9. PubMed ID: 29580945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols.
    Gonthier MP; Cheynier V; Donovan JL; Manach C; Morand C; Mila I; Lapierre C; Rémésy C; Scalbert A
    J Nutr; 2003 Feb; 133(2):461-7. PubMed ID: 12566484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial catabolism of procyanidins by human gut microbiota.
    Ou K; Sarnoski P; Schneider KR; Song K; Khoo C; Gu L
    Mol Nutr Food Res; 2014 Nov; 58(11):2196-205. PubMed ID: 25045165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols.
    Margalef M; Pons Z; Iglesias-Carres L; Quiñones M; Bravo FI; Arola-Arnal A; Muguerza B
    Mol Nutr Food Res; 2017 Feb; 61(2):. PubMed ID: 27624317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of targeted phenolic ageing markers in Syrah red wines during bottle ageing: Influence of cork oxygen transfer rate.
    Garcia L; Martet E; Suc L; Garcia F; Saucier C
    Food Chem; 2024 Jun; 443():138491. PubMed ID: 38290297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic fingerprint after acute and under sustained consumption of a functional beverage based on grape skin extract in healthy human subjects.
    Khymenets O; Andres-Lacueva C; Urpi-Sarda M; Vazquez-Fresno R; Mart MM; Reglero G; Torres M; Llorach R
    Food Funct; 2015 Apr; 6(4):1288-98. PubMed ID: 25761658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach.
    Sasot G; Martínez-Huélamo M; Vallverdú-Queralt A; Mercader-Martí M; Estruch R; Lamuela-Raventós RM
    Food Res Int; 2017 Oct; 100(Pt 3):435-444. PubMed ID: 28964366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites.
    Cueva C; Sánchez-Patán F; Monagas M; Walton GE; Gibson GR; Martín-Álvarez PJ; Bartolomé B; Moreno-Arribas MV
    FEMS Microbiol Ecol; 2013 Mar; 83(3):792-805. PubMed ID: 23121387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity.
    Jara-Palacios MJ; Hernanz D; Cifuentes-Gomez T; Escudero-Gilete ML; Heredia FJ; Spencer JP
    Food Chem; 2015 Sep; 183():78-82. PubMed ID: 25863613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites.
    Vetrani C; Rivellese AA; Annuzzi G; Adiels M; Borén J; Mattila I; Orešič M; Aura AM
    J Nutr Biochem; 2016 Jul; 33():111-8. PubMed ID: 27155917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites.
    Monagas M; Urpi-Sarda M; Sánchez-Patán F; Llorach R; Garrido I; Gómez-Cordovés C; Andres-Lacueva C; Bartolomé B
    Food Funct; 2010 Dec; 1(3):233-53. PubMed ID: 21776473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization.
    Wang D; Ho L; Faith J; Ono K; Janle EM; Lachcik PJ; Cooper BR; Jannasch AH; D'Arcy BR; Williams BA; Ferruzzi MG; Levine S; Zhao W; Dubner L; Pasinetti GM
    Mol Nutr Food Res; 2015 Jun; 59(6):1025-40. PubMed ID: 25689033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.