BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30032311)

  • 1. Differential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae).
    Goodger JQD; Senaratne SL; Nicolle D; Woodrow IE
    Tree Physiol; 2018 Oct; 38(10):1451-1460. PubMed ID: 30032311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents.
    Goodger JQ; Seneratne SL; Nicolle D; Woodrow IE
    PLoS One; 2016; 11(3):e0151432. PubMed ID: 26977933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species.
    Borzak CL; Potts BM; Davies NW; O'Reilly-Wapstra JM
    Ann Bot; 2015 Jan; 115(1):159-70. PubMed ID: 25434028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting ontogenetic trajectories for phenolic and terpenoid defences in Eucalyptus froggattii.
    Goodger JQ; Heskes AM; Woodrow IE
    Ann Bot; 2013 Aug; 112(4):651-9. PubMed ID: 23378522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of oil accumulation in single glands of Eucalyptus polybractea.
    King DJ; Gleadow RM; Woodrow IE
    New Phytol; 2006; 172(3):440-51. PubMed ID: 17083675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensive sampling identifies previously unknown chemotypes, population divergence and biosynthetic connections among terpenoids in Eucalyptus tricarpa.
    Andrew RL; Keszei A; Foley WJ
    Phytochemistry; 2013 Oct; 94():148-58. PubMed ID: 23769022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbicidal β-triketones are compartmentalized in leaves of Leptospermum species: localization by Raman microscopy and rapid screening.
    Killeen DP; van Klink JW; Smallfield BM; Gordon KC; Perry NB
    New Phytol; 2015 Jan; 205(1):339-49. PubMed ID: 25103692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Untargeted metabolomic profiling of fresh and dried leaf extracts of young and mature
    Pinto M; Soares C; Pereira R; Rodrigues JA; Fidalgo F; Valente IM
    Front Plant Sci; 2022; 13():986197. PubMed ID: 36452102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens.
    Henery ML; Moran GF; Wallis IR; Foley WJ
    New Phytol; 2007; 176(1):82-95. PubMed ID: 17696979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium.
    Douglas MH; van Klink JW; Smallfield BM; Perry NB; Anderson RE; Johnstone P; Weavers RT
    Phytochemistry; 2004 May; 65(9):1255-64. PubMed ID: 15184010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus.
    Gosney B; O'Reilly-Wapstra J; Forster L; Whiteley C; Potts B
    J Chem Ecol; 2017 May; 43(5):532-542. PubMed ID: 28478546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of volatile and non-volatile plant secondary metabolites in host tree selection by Christmas beetles.
    Matsuki M; Foley WJ; Floyd RB
    J Chem Ecol; 2011 Mar; 37(3):286-300. PubMed ID: 21336682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific Variation in Nutritional Composition Affects the Leaf Age Preferences of a Mammalian Herbivore.
    Marsh KJ; Ward J; Wallis IR; Foley WJ
    J Chem Ecol; 2018 Jan; 44(1):62-71. PubMed ID: 29209932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiherbivore chemistry of Eucalyptus-cues and deterrents for marsupial folivores.
    Moore BD; Wallis IR; Palá-Paul J; Brophy JJ; Willis RH; Foley WJ
    J Chem Ecol; 2004 Sep; 30(9):1743-69. PubMed ID: 15586672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids.
    Velikova V; Loreto F; Brilli F; Stefanov D; Yordanov I
    Plant Biol (Stuttg); 2008 Jan; 10(1):55-64. PubMed ID: 18211547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of Genomic Prediction for Foliar Terpene Traits in
    Kainer D; Stone EA; Padovan A; Foley WJ; Külheim C
    G3 (Bethesda); 2018 Jul; 8(8):2573-2583. PubMed ID: 29891736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.
    Dhakad AK; Pandey VV; Beg S; Rawat JM; Singh A
    J Sci Food Agric; 2018 Feb; 98(3):833-848. PubMed ID: 28758221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae).
    Alvarez Costa A; Naspi CV; Lucia A; Masuh HM
    J Med Entomol; 2017 May; 54(3):670-676. PubMed ID: 28399283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foliar Terpene Chemotypes and Herbivory Determine Variation in Plant Volatile Emissions.
    Bustos-Segura C; Foley WJ
    J Chem Ecol; 2018 Jan; 44(1):51-61. PubMed ID: 29376212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terpene deployment in Eucalyptus polybractea; relationships with leaf structure, environmental stresses, and growth.
    King DJ; Gleadow RM; Woodrow IE
    Funct Plant Biol; 2004 Jun; 31(5):451-460. PubMed ID: 32688917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.