These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. Wassermann AM; Geppert H; Bajorath J J Chem Inf Model; 2009 Oct; 49(10):2155-67. PubMed ID: 19780576 [TBL] [Abstract][Full Text] [Related]
24. Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing. Smith RD; Clark JJ; Ahmed A; Orban ZJ; Dunbar JB; Carlson HA J Mol Biol; 2019 Jun; 431(13):2423-2433. PubMed ID: 31125569 [TBL] [Abstract][Full Text] [Related]
25. Molecular interaction fingerprint approaches for GPCR drug discovery. Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316 [TBL] [Abstract][Full Text] [Related]
26. A chemogenomics based approach for deorphanization of testicular receptor 4: An orphan receptor of nuclear receptor superfamily. Deshmukh S; Madagi SB J Nat Sci Biol Med; 2013 Jul; 4(2):276-81. PubMed ID: 24082716 [TBL] [Abstract][Full Text] [Related]
27. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3. Jayaram H; Hoelper D; Jain SU; Cantone N; Lundgren SM; Poy F; Allis CD; Cummings R; Bellon S; Lewis PW Proc Natl Acad Sci U S A; 2016 May; 113(22):6182-7. PubMed ID: 27185940 [TBL] [Abstract][Full Text] [Related]
28. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Satish M; Nivya MA; Abhishek S; Nakarakanti NK; Shivani D; Vani MV; Rajakumara E Proteins; 2018 Jan; 86(1):21-34. PubMed ID: 29024026 [TBL] [Abstract][Full Text] [Related]
29. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114 [TBL] [Abstract][Full Text] [Related]
30. Utilizing target-ligand interaction information in fingerprint searching for ligands of related targets. Tan L; Bajorath J Chem Biol Drug Des; 2009 Jul; 74(1):25-32. PubMed ID: 19519741 [TBL] [Abstract][Full Text] [Related]
31. Strategy to target the substrate binding site of SET domain protein methyltransferases. Nguyen KT; Li F; Poda G; Smil D; Vedadi M; Schapira M J Chem Inf Model; 2013 Mar; 53(3):681-91. PubMed ID: 23410263 [TBL] [Abstract][Full Text] [Related]
32. Structural chemistry of the histone methyltransferases cofactor binding site. Campagna-Slater V; Mok MW; Nguyen KT; Feher M; Najmanovich R; Schapira M J Chem Inf Model; 2011 Mar; 51(3):612-23. PubMed ID: 21366357 [TBL] [Abstract][Full Text] [Related]
34. Pharmacological relationships and ligand discovery of G protein-coupled receptors revealed by simultaneous ligand and receptor clustering. Zhang C; Shao YM; Ma X; Cheong SL; Qin C; Tao L; Zhang P; Chen S; Zeng X; Liu H; Pastorin G; Jiang Y; Chen YZ J Mol Graph Model; 2017 Sep; 76():136-142. PubMed ID: 28728042 [TBL] [Abstract][Full Text] [Related]
35. Constitutively active BRS3 is a genuinely orphan GPCR in placental mammals. Tang H; Shu C; Chen H; Zhang X; Zang Z; Deng C PLoS Biol; 2019 Mar; 17(3):e3000175. PubMed ID: 30840614 [TBL] [Abstract][Full Text] [Related]
36. Bioinformatics-based discovery and identification of new biologically active peptides for GPCR deorphanization. Colette J; Avé E; Grenier-Boley B; Coquel AS; Lesellier K; Puget K J Pept Sci; 2007 Sep; 13(9):568-74. PubMed ID: 17694568 [TBL] [Abstract][Full Text] [Related]
37. Fragment-Based Ligand Discovery Applied to the Mycolic Acid Methyltransferase Hma (MmaA4) from Galy R; Ballereau S; Génisson Y; Mourey L; Plaquevent JC; Maveyraud L Pharmaceuticals (Basel); 2021 Dec; 14(12):. PubMed ID: 34959681 [TBL] [Abstract][Full Text] [Related]
38. Identification and Analysis of the SET-Domain Family in Silkworm, Bombyx mori. Zhao H; Zheng C; Cui H Biomed Res Int; 2015; 2015():161287. PubMed ID: 26558257 [TBL] [Abstract][Full Text] [Related]
39. Structure investigation, enrichment analysis and structure-based repurposing of FDA-approved drugs as inhibitors of BET-BRD4. Wakchaure P; Velayutham R; Roy KK J Biomol Struct Dyn; 2019 Aug; 37(12):3048-3057. PubMed ID: 30079805 [TBL] [Abstract][Full Text] [Related]
40. Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort. Ha K; Anand P; Lee JA; Jones JR; Kim CA; Bertola DR; Labonne JD; Layman LC; Wenzel W; Kim HG Genes (Basel); 2016 Nov; 7(11):. PubMed ID: 27834868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]