These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 30032409)
21. Sintered carbonate apatites as bioresorbable bone substitutes. Doi Y; Shibutani T; Moriwaki Y; Kajimoto T; Iwayama Y J Biomed Mater Res; 1998 Mar; 39(4):603-10. PubMed ID: 9492222 [TBL] [Abstract][Full Text] [Related]
22. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. Mano T; Akita K; Fukuda N; Kamada K; Kurio N; Ishikawa K; Miyamoto Y J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1450-1459. PubMed ID: 31622016 [TBL] [Abstract][Full Text] [Related]
23. Influence of PLGA concentrations on structural and mechanical properties of carbonate apatite foam. Munar GM; Munar ML; Tsuru K; Ishikawa K Dent Mater J; 2013; 32(4):608-14. PubMed ID: 23903643 [TBL] [Abstract][Full Text] [Related]
24. Effects of PLGA reinforcement methods on the mechanical property of carbonate apatite foam. Munar GM; Munar ML; Tsuru K; Ishikawa K Biomed Mater Eng; 2014; 24(5):1817-25. PubMed ID: 25201395 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of carbonate apatite honeycomb and its tissue response. Ishikawa K; Munar ML; Tsuru K; Miyamoto Y J Biomed Mater Res A; 2019 May; 107(5):1014-1020. PubMed ID: 30706693 [TBL] [Abstract][Full Text] [Related]
26. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration. Tripathi G; Sugiura Y; Tsuru K; Ishikawa K Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092 [TBL] [Abstract][Full Text] [Related]
27. Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. Elsheikh M; Kishida R; Hayashi K; Tsuchiya A; Shimabukuro M; Ishikawa K Regen Biomater; 2022; 9(1):rbac010. PubMed ID: 35449826 [TBL] [Abstract][Full Text] [Related]
28. Tissue reaction and material characteristics of four bone substitutes. Jensen SS; Aaboe M; Pinholt EM; Hjørting-Hansen E; Melsen F; Ruyter IE Int J Oral Maxillofac Implants; 1996; 11(1):55-66. PubMed ID: 8820123 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects. Akita K; Fukuda N; Kamada K; Kudoh K; Kurio N; Tsuru K; Ishikawa K; Miyamoto Y J Biomed Mater Res A; 2020 Mar; 108(3):709-721. PubMed ID: 31756282 [TBL] [Abstract][Full Text] [Related]
30. Effect of added NaHCO3 on the basic properties of apatite cement. Miyamoto Y; Toh T; Ishikawa K; Yuasa T; Nagayama M; Suzuki K J Biomed Mater Res; 2001 Mar; 54(3):311-9. PubMed ID: 11189035 [TBL] [Abstract][Full Text] [Related]
31. [Effect of Bio-Oss loading with rAAV-BMP7 on regeneration of bone defects around dental implant]. Song K; Du JM; Luo RH; Cao YG Hua Xi Kou Qiang Yi Xue Za Zhi; 2008 Aug; 26(4):421-4, 429. PubMed ID: 18780506 [TBL] [Abstract][Full Text] [Related]
32. Molecular structure of the bony tissue after experimental trauma to the mandibular region followed by laser therapy. Rochkind S; Kogan G; Luger EG; Salame K; Karp E; Graif M; Weiss J Photomed Laser Surg; 2004 Jun; 22(3):249-53. PubMed ID: 15315733 [TBL] [Abstract][Full Text] [Related]
33. Fabrication and Histological Evaluation of Porous Carbonate Apatite Block from Gypsum Block Containing Spherical Phenol Resin as a Porogen. Sakemi Y; Hayashi K; Tsuchiya A; Nakashima Y; Ishikawa K Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31810192 [TBL] [Abstract][Full Text] [Related]
34. Zinc-coated carbonate apatite derived from avian eggshell for potential use as bone substitute. Part I: preparation and properties. Cai YD; Wang SM; Chou AH; Yu LY; Sun J Implant Dent; 2012 Jun; 21(3):230-5. PubMed ID: 22584418 [TBL] [Abstract][Full Text] [Related]
35. Synergistic effects of magnesium and carbonate on properties of biological and synthetic apatites. LeGeros RZ; Kijkowska R; Bautista C; LeGeros JP Connect Tissue Res; 1995; 33(1-3):203-9. PubMed ID: 7554956 [TBL] [Abstract][Full Text] [Related]
36. Comparison of the performances of low-crystalline carbonate apatite and Bio-Oss in sinus augmentation using three-dimensional image analysis. Nagata K; Fuchigami K; Kitami R; Okuhama Y; Wakamori K; Sumitomo H; Kim H; Okubo M; Kawana H Int J Implant Dent; 2021 Mar; 7(1):24. PubMed ID: 33754242 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate. Daitou F; Maruta M; Kawachi G; Tsuru K; Matsuya S; Terada Y; Ishikawa K Dent Mater J; 2010 May; 29(3):303-8. PubMed ID: 20448406 [TBL] [Abstract][Full Text] [Related]
38. Novel Synthetic Carbonate Apatite as a Bone Substitute in Implant Treatments: Case Reports. Funato A; Katayama A; Moroi H Int J Periodontics Restorative Dent; 2024 May; 44(3):257-266. PubMed ID: 38787711 [TBL] [Abstract][Full Text] [Related]
39. Biocompatibility performance evaluation of high flux hydrophilic CO3Ap/HAP/PSF composite membranes for hemodialysis application. Zaman SU; Saif-Ur-Rehman ; Zaman MKU; Arshad A; Rafiq S; Muhammad N; Saqib S; Jamal M; Wajeeh S; Imtiaz S; Sadiq MT Artif Organs; 2021 Aug; 45(8):E265-E279. PubMed ID: 33559192 [TBL] [Abstract][Full Text] [Related]
40. Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation. Jokanović V; Čolović B; Marković D; Petrović M; Soldatović I; Antonijević D; Milosavljević P; Sjerobabin N; Sopta J Biomed Tech (Berl); 2017 May; 62(3):295-306. PubMed ID: 27285125 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]