These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30032970)

  • 1. Accuracy of using natural language processing methods for identifying healthcare-associated infections.
    Tvardik N; Kergourlay I; Bittar A; Segond F; Darmoni S; Metzger MH
    Int J Med Inform; 2018 Sep; 117():96-102. PubMed ID: 30032970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Standard Evaluation of an Automatic HAIs Surveillance System.
    Villamarín-Bello B; Uriel-Latorre B; Fdez-Riverola F; Sande-Meijide M; Glez-Peña D
    Biomed Res Int; 2019; 2019():1049575. PubMed ID: 31662963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting borderline infection in an automated monitoring system for healthcare-associated infection using fuzzy logic.
    de Bruin JS; Adlassnig KP; Blacky A; Koller W
    Artif Intell Med; 2016 May; 69():33-41. PubMed ID: 27156053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.
    Koller W; de Bruin JS; Rappelsberger A; Adlassnig KP
    Stud Health Technol Inform; 2015; 216():295-9. PubMed ID: 26262058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accuracy of fully automated algorithms for surveillance of healthcare-associated urinary tract infections in hospitalized patients.
    van der Werff SD; Thiman E; Tanushi H; Valik JK; Henriksson A; Ul Alam M; Dalianis H; Ternhag A; Nauclér P
    J Hosp Infect; 2021 Apr; 110():139-147. PubMed ID: 33548370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Language Processing for Real-Time Catheter-Associated Urinary Tract Infection Surveillance: Results of a Pilot Implementation Trial.
    Branch-Elliman W; Strymish J; Kudesia V; Rosen AK; Gupta K
    Infect Control Hosp Epidemiol; 2015 Sep; 36(9):1004-10. PubMed ID: 26022228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Extraction of VTE Events From Narrative Radiology Reports in Electronic Health Records: A Validation Study.
    Tian Z; Sun S; Eguale T; Rochefort CM
    Med Care; 2017 Oct; 55(10):e73-e80. PubMed ID: 25924079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automation of a problem list using natural language processing.
    Meystre S; Haug PJ
    BMC Med Inform Decis Mak; 2005 Aug; 5():30. PubMed ID: 16135244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated surveillance of healthcare-associated infections: state of the art.
    Sips ME; Bonten MJM; van Mourik MSM
    Curr Opin Infect Dis; 2017 Aug; 30(4):425-431. PubMed ID: 28505027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and generalizability of using automated methods for identifying adverse events from electronic health record data: a validation study protocol.
    Rochefort CM; Buckeridge DL; Tanguay A; Biron A; D'Aragon F; Wang S; Gallix B; Valiquette L; Audet LA; Lee TC; Jayaraman D; Petrucci B; Lefebvre P
    BMC Health Serv Res; 2017 Feb; 17(1):147. PubMed ID: 28209197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning versus Conventional Machine Learning for Detection of Healthcare-Associated Infections in French Clinical Narratives.
    Rabhi S; Jakubowicz J; Metzger MH
    Methods Inf Med; 2019 Jun; 58(1):31-41. PubMed ID: 30877683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of ileostomy from colostomy procedures: assessing the accuracy of current procedural terminology codes and the utility of natural language processing.
    Vo E; Davila JA; Hou J; Hodge K; Li LT; Suliburk JW; Kao LS; Berger DH; Liang MK
    Surgery; 2013 Aug; 154(2):411-7. PubMed ID: 23790751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Korean National Healthcare-associated Infections Surveillance System (KONIS): an intensive care unit module report.
    Kwak YG; Choi JY; Yoo HM; Lee SO; Kim HB; Han SH; Choi HJ; Kim SR; Kim TH; Chun HK; Koo HS
    J Hosp Infect; 2017 Aug; 96(4):377-384. PubMed ID: 28545827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of natural language processing on cross-institutional portability of influenza case detection for disease surveillance.
    Ferraro JP; Ye Y; Gesteland PH; Haug PJ; Tsui FR; Cooper GF; Van Bree R; Ginter T; Nowalk AJ; Wagner M
    Appl Clin Inform; 2017 May; 8(2):560-580. PubMed ID: 28561130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Total Hip Arthroplasty.
    Wyles CC; Tibbo ME; Fu S; Wang Y; Sohn S; Kremers WK; Berry DJ; Lewallen DG; Maradit-Kremers H
    J Bone Joint Surg Am; 2019 Nov; 101(21):1931-1938. PubMed ID: 31567670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medication Extraction from Electronic Clinical Notes in an Integrated Health System: A Study on Aspirin Use in Patients with Nonvalvular Atrial Fibrillation.
    Zheng C; Rashid N; Koblick R; An J
    Clin Ther; 2015 Sep; 37(9):2048-2058.e2. PubMed ID: 26233471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes.
    Divita G; Carter M; Redd A; Zeng Q; Gupta K; Trautner B; Samore M; Gundlapalli A
    Methods Inf Med; 2015; 54(6):548-52. PubMed ID: 26534722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Surveillance For Catheter-Associated Urinary Tract Infection Using Natural Language Processing.
    Sanger PC; Granich M; Olsen-Scribner R; Jain R; Lober WB; Stapleton A; Pottinger PS
    AMIA Annu Symp Proc; 2017; 2017():1507-1516. PubMed ID: 29854220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incidence of healthcare-associated infections in a tertiary care hospital: results from a three-year period of electronic surveillance.
    Puhto T; Syrjälä H
    J Hosp Infect; 2015 May; 90(1):46-51. PubMed ID: 25676112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of using automated methods for detecting adverse events from electronic health record data: a research protocol.
    Rochefort CM; Buckeridge DL; Forster AJ
    Implement Sci; 2015 Jan; 10():5. PubMed ID: 25567422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.