These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30033245)

  • 41. Keratin hydrogels support the sustained release of bioactive ciprofloxacin.
    Saul JM; Ellenburg MD; de Guzman RC; Van Dyke M
    J Biomed Mater Res A; 2011 Sep; 98(4):544-53. PubMed ID: 21681948
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and characterization of keratin-chitosan composite film.
    Tanabe T; Okitsu N; Tachibana A; Yamauchi K
    Biomaterials; 2002 Feb; 23(3):817-25. PubMed ID: 11771701
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo biocompatibility and mechanical properties of porous zein scaffolds.
    Wang HJ; Gong SJ; Lin ZX; Fu JX; Xue ST; Huang JC; Wang JY
    Biomaterials; 2007 Sep; 28(27):3952-64. PubMed ID: 17582490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ovine keratome: identification, localisation and genomic organisation of keratin and keratin-associated proteins.
    Yu Z; Plowman JE; Maclean P; Wildermoth JE; Brauning R; McEwan JC; Maqbool NJ
    Anim Genet; 2018 Oct; 49(5):361-370. PubMed ID: 30062723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.
    Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T
    Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The evaluation of structural changes in wool fibre keratin treated with azo dyes by Fourier Transform Infrared Spectroscopy.
    Pielesz A; Włochowicz A; Biniaś W
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jun; 56A(7):1409-20. PubMed ID: 10888445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery.
    Ham TR; Lee RT; Han S; Haque S; Vodovotz Y; Gu J; Burnett LR; Tomblyn S; Saul JM
    Biomacromolecules; 2016 Jan; 17(1):225-36. PubMed ID: 26636618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.
    Wang J; Hu H; Yang Z; Wei J; Li J
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():376-86. PubMed ID: 26838864
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Keratins extracted from Merino wool and Brown Alpaca fibres: thermal, mechanical and biological properties of PLLA based biocomposites.
    Fortunati E; Aluigi A; Armentano I; Morena F; Emiliani C; Martino S; Santulli C; Torre L; Kenny JM; Puglia D
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():394-406. PubMed ID: 25492212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels.
    Hua J; Li Z; Xia W; Yang N; Gong J; Zhang J; Qiao C
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():879-92. PubMed ID: 26838920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Well-defined and biocompatible hydrogels with toughening and reversible photoresponsive properties.
    Sun Z; Liu S; Li K; Tan L; Cen L; Fu G
    Soft Matter; 2016 Feb; 12(7):2192-9. PubMed ID: 26744299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using Wool Keratin as a Basic Resist Material to Fabricate Precise Protein Patterns.
    Zhu S; Zeng W; Meng Z; Luo W; Ma L; Li Y; Lin C; Huang Q; Lin Y; Liu XY
    Adv Mater; 2019 Jul; 31(28):e1900870. PubMed ID: 31081271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.
    Curley C; Hayes JC; Rowan NJ; Kennedy JE
    J Mech Behav Biomed Mater; 2014 Dec; 40():13-22. PubMed ID: 25190433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flow behavior of regenerated wool-keratin proteins in different mediums.
    Alemdar A; Iridag Y; Kazanci M
    Int J Biol Macromol; 2005 Apr; 35(3-4):151-3. PubMed ID: 15811469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone.
    Xiao G; Wang Y; Zhang H; Chen L; Fu S
    Carbohydr Polym; 2019 Aug; 218():68-77. PubMed ID: 31221345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of a wool intermediate filament keratin transgene in sheep fibre alters structure.
    Bawden CS; Powell BC; Walker SK; Rogers GE
    Transgenic Res; 1998 Jul; 7(4):273-87. PubMed ID: 9859216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.
    Moura MJ; Faneca H; Lima MP; Gil MH; Figueiredo MM
    Biomacromolecules; 2011 Sep; 12(9):3275-84. PubMed ID: 21774479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus.
    Borges AC; Eyholzer C; Duc F; Bourban PE; Tingaut P; Zimmermann T; Pioletti DP; Månson JA
    Acta Biomater; 2011 Sep; 7(9):3412-21. PubMed ID: 21651996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface active complexes formed between keratin polypeptides and ionic surfactants.
    Pan F; Lu Z; Tucker I; Hosking S; Petkov J; Lu JR
    J Colloid Interface Sci; 2016 Dec; 484():125-134. PubMed ID: 27599381
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vibrational Study on Structure and Bioactivity of Protein Fibers Grafted with Phosphorylated Methacrylates.
    Di Foggia M; Tsukada M; Taddei P
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.