These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 30033293)
1. Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Li Y; Lin J; Zhi X; Li P; Jiang X; Yuan J Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():606-614. PubMed ID: 30033293 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Li Y; Zhi X; Lin J; You X; Yuan J Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():189-197. PubMed ID: 28183597 [TBL] [Abstract][Full Text] [Related]
3. DOX-Conjugated keratin nanoparticles for pH-Sensitive drug delivery. Liu P; Wu Q; Li Y; Li P; Yuan J; Meng X; Xiao Y Colloids Surf B Biointerfaces; 2019 Sep; 181():1012-1018. PubMed ID: 31382328 [TBL] [Abstract][Full Text] [Related]
4. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. Zhi X; Liu P; Li Y; Li P; Yuan J; Lin J J Biomater Sci Polym Ed; 2018 Oct; 29(15):1920-1934. PubMed ID: 30183550 [TBL] [Abstract][Full Text] [Related]
5. Self-crosslinked keratin nanoparticles for pH and GSH dual responsive drug carriers. Wang L; Du J; Han X; Dou J; Shen J; Yuan J J Biomater Sci Polym Ed; 2020 Oct; 31(15):1994-2006. PubMed ID: 32589511 [TBL] [Abstract][Full Text] [Related]
6. Tumor-targeted and nitric oxide-generated nanogels of keratin and hyaluronan for enhanced cancer therapy. Sun Z; Yi Z; Cui X; Chen X; Su W; Ren X; Li X Nanoscale; 2018 Jul; 10(25):12109-12122. PubMed ID: 29915821 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of Keratin-PEG conjugate-based micelles as a tumor microenvironment-responsive drug delivery system. Du J; Wu Q; Li Y; Liu P; Han X; Wang L; Yuan J; Meng X; Xiao Y J Biomater Sci Polym Ed; 2020 Jun; 31(9):1163-1178. PubMed ID: 32204684 [TBL] [Abstract][Full Text] [Related]
8. Folate-receptor mediated pH/reduction-responsive biomimetic nanoparticles for dually activated multi-stage anticancer drug delivery. Wang D; Chen W; Li H; Huang G; Zhou Y; Wang Y; Wan W; You B; Liu Y; Zhang X Int J Pharm; 2020 Jul; 585():119456. PubMed ID: 32492507 [TBL] [Abstract][Full Text] [Related]
9. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Lv S; Li M; Tang Z; Song W; Sun H; Liu H; Chen X Acta Biomater; 2013 Dec; 9(12):9330-42. PubMed ID: 23958784 [TBL] [Abstract][Full Text] [Related]
10. Keratin-tannic acid complex nanoparticles as pH/GSH dual responsive drug carriers for doxorubicin. Du J; Wang L; Han X; Dou J; Yuan J; Shen J J Biomater Sci Polym Ed; 2021 Jun; 32(9):1125-1139. PubMed ID: 33739232 [TBL] [Abstract][Full Text] [Related]
11. Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Sun Z; Yi Z; Zhang H; Ma X; Su W; Sun X; Li X Carbohydr Polym; 2017 Nov; 175():159-169. PubMed ID: 28917852 [TBL] [Abstract][Full Text] [Related]
12. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Chen WL; Li F; Tang Y; Yang SD; Li JZ; Yuan ZQ; Liu Y; Zhou XF; Liu C; Zhang XN Int J Nanomedicine; 2017; 12():4241-4256. PubMed ID: 28652730 [TBL] [Abstract][Full Text] [Related]
13. Facile preparation of core cross-linked nanomicelles based on graft copolymers with pH responsivity and reduction sensitivity for doxorubicin delivery. Chen T; Xiao Y; Lu W; Liu S; Gan L; Yu J; Huang J Colloids Surf B Biointerfaces; 2018 Jan; 161():606-613. PubMed ID: 29156337 [TBL] [Abstract][Full Text] [Related]
14. Programmed pH/reduction-responsive nanoparticles for efficient delivery of antitumor agents in vivo. Chen WL; Yang SD; Li F; Qu CX; Liu Y; Wang Y; Wang DD; Zhang XN Acta Biomater; 2018 Nov; 81():219-230. PubMed ID: 30267887 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin. Zhang J; Sun Y; Tian B; Li K; Wang L; Liang Y; Han J Colloids Surf B Biointerfaces; 2016 Aug; 144():293-302. PubMed ID: 27107383 [TBL] [Abstract][Full Text] [Related]
16. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy Men W; Zhu P; Dong S; Liu W; Zhou K; Bai Y; Liu X; Gong S; Zhang S Drug Deliv; 2020 Dec; 27(1):180-190. PubMed ID: 31924103 [TBL] [Abstract][Full Text] [Related]
17. Keratin-dopamine conjugate nanoparticles as pH/GSH dual responsive drug carriers. Han X; Wang L; Du J; Dou J; Yuan J; Shen J J Biomater Sci Polym Ed; 2020 Dec; 31(18):2318-2330. PubMed ID: 32729373 [TBL] [Abstract][Full Text] [Related]
18. Stepwise targeted drug delivery to liver cancer cells for enhanced therapeutic efficacy by galactose-grafted, ultra-pH-sensitive micelles. Yan G; Wang J; Hu L; Wang X; Yang G; Fu S; Cheng X; Zhang P; Tang R Acta Biomater; 2017 Mar; 51():363-373. PubMed ID: 28087485 [TBL] [Abstract][Full Text] [Related]
19. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. He Y; Su Z; Xue L; Xu H; Zhang C J Control Release; 2016 May; 229():80-92. PubMed ID: 26945977 [TBL] [Abstract][Full Text] [Related]
20. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. Wang G; Maciel D; Wu Y; Rodrigues J; Shi X; Yuan Y; Liu C; Tomás H; Li Y ACS Appl Mater Interfaces; 2014 Oct; 6(19):16687-95. PubMed ID: 25167168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]