BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30033333)

  • 1. CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants.
    Whitewoods CD; Cammarata J; Nemec Venza Z; Sang S; Crook AD; Aoyama T; Wang XY; Waller M; Kamisugi Y; Cuming AC; Szövényi P; Nimchuk ZL; Roeder AHK; Scanlon MJ; Harrison CJ
    Curr Biol; 2018 Aug; 28(15):2365-2376.e5. PubMed ID: 30033333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss.
    Nemec-Venza Z; Madden C; Stewart A; Liu W; Novák O; Pěnčík A; Cuming AC; Kamisugi Y; Harrison CJ
    New Phytol; 2022 Apr; 234(1):149-163. PubMed ID: 35032334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Regulation of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
    Moody LA; Kelly S; Rabbinowitsch E; Langdale JA
    Curr Biol; 2018 Feb; 28(3):473-478.e5. PubMed ID: 29395927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NO GAMETOPHORES 2 Is a Novel Regulator of the 2D to 3D Growth Transition in the Moss Physcomitrella patens.
    Moody LA; Kelly S; Clayton R; Weeks Z; Emms DM; Langdale JA
    Curr Biol; 2021 Feb; 31(3):555-563.e4. PubMed ID: 33242390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 2D to 3D growth transition in the moss Physcomitrella patens.
    Moody LA
    Curr Opin Plant Biol; 2019 Feb; 47():88-95. PubMed ID: 30399606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric cues forecast the switch from two- to three-dimensional growth in Physcomitrella patens.
    Tang H; Duijts K; Bezanilla M; Scheres B; Vermeer JEM; Willemsen V
    New Phytol; 2020 Mar; 225(5):1945-1955. PubMed ID: 31639220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls.
    McCarthy TW; Der JP; Honaas LA; dePamphilis CW; Anderson CT
    BMC Plant Biol; 2014 Mar; 14():79. PubMed ID: 24666997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.
    Mosquna A; Katz A; Decker EL; Rensing SA; Reski R; Ohad N
    Development; 2009 Jul; 136(14):2433-44. PubMed ID: 19542356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens.
    Harrison CJ; Roeder AH; Meyerowitz EM; Langdale JA
    Curr Biol; 2009 Mar; 19(6):461-71. PubMed ID: 19303301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A KNOX-Cytokinin Regulatory Module Predates the Origin of Indeterminate Vascular Plants.
    Coudert Y; Novák O; Harrison CJ
    Curr Biol; 2019 Aug; 29(16):2743-2750.e5. PubMed ID: 31378615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle.
    Rawat A; Brejšková L; Hála M; Cvrčková F; Žárský V
    New Phytol; 2017 Oct; 216(2):438-454. PubMed ID: 28397275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEK1; missing piece in puzzle of plant development.
    Olsen OA; Perroud PF; Johansen W; Demko V
    Trends Plant Sci; 2015 Feb; 20(2):70-1. PubMed ID: 25612461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.
    Ran JH; Shen TT; Liu WJ; Wang XQ
    PLoS One; 2013; 8(11):e78997. PubMed ID: 24244399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element.
    Sakata Y; Nakamura I; Taji T; Tanaka S; Quatrano RS
    Plant Signal Behav; 2010 Sep; 5(9):1061-6. PubMed ID: 20448474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens: its conserved protein interactions in land plants.
    Parihar V; Arya D; Walia A; Tyagi V; Dangwal M; Verma V; Khurana R; Boora N; Kapoor S; Kapoor M
    Plant J; 2019 Jan; 97(2):221-239. PubMed ID: 30537172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants.
    Ortiz-Ramírez C; Hernandez-Coronado M; Thamm A; Catarino B; Wang M; Dolan L; Feijó JA; Becker JD
    Mol Plant; 2016 Feb; 9(2):205-220. PubMed ID: 26687813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VAPYRIN-like is required for development of the moss
    Rathgeb U; Chen M; Buron F; Feddermann N; Schorderet M; Raisin A; Häberli GY; Marc-Martin S; Keller J; Delaux PM; Schaefer DG; Reinhardt D
    Development; 2020 May; 147(11):. PubMed ID: 32376679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes.
    Hata Y; Kyozuka J
    Plant Mol Biol; 2021 Nov; 107(4-5):213-225. PubMed ID: 33609252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs in the moss Physcomitrella patens.
    Arazi T
    Plant Mol Biol; 2012 Sep; 80(1):55-65. PubMed ID: 21373961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.