These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3003335)

  • 1. Cholesterol monohydrate dissolution rate studies in aqueous micellar solutions of alpha-(nonylphenyl)-omega-hydroxydeca(oxyethylene), n-alkylamines, and fatty acids.
    Gupta SL; Higuchi WI; Ho NF
    J Pharm Sci; 1985 Nov; 74(11):1172-7. PubMed ID: 3003335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol monohydrate dissolution rate studies in aqueous micellar sodium chenodeoxycholate solutions.
    Gupta SL; Higuchi WI; Ho NF
    J Pharm Sci; 1985 Nov; 74(11):1178-83. PubMed ID: 4087177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of the interfacial barrier to membrane transport of cholesterol solubilized in a charged micellar system.
    Karth MG; Ho NF; Higuchi WI
    J Pharm Sci; 1985 Jun; 74(6):618-20. PubMed ID: 4020648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct membrane method for the study of interface-controlled transport of cholesterol in aqueous media.
    Karth MG; Higuchi WI; Fox JL
    J Pharm Sci; 1985 Jun; 74(6):612-7. PubMed ID: 4020647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.
    Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA
    Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution rate studies of cholesterol monohydrate in bile acid-lecithin solutions using the rotatingdisk method.
    Prakongpan S; Higuchi WI; Kwan KH; Molokhia AM
    J Pharm Sci; 1976 May; 65(5):685-9. PubMed ID: 932935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enlargement of taurocholate micelles by added cholesterol and monoolein: self-diffusion measurements.
    Woodford FP
    J Lipid Res; 1969 Sep; 10(5):539-45. PubMed ID: 5808827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the derivatization of n-alkylamines with 1-fluoro-2,4-dinitrobenzene in the presence of aqueous cetyltrimethylammonium bromide micelles.
    van der Horst FA; Holthuis JJ
    J Chromatogr; 1988 Apr; 426(2):267-82. PubMed ID: 3392140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid crystalline phase formation by cholesterol in aqueous fatty acid salt solutions.
    Bogardus JB
    Hepatology; 1984; 4(5 Suppl):148S-150S. PubMed ID: 6479871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nuclear magnetic resonance (nmr) investigation of the micellar structure of a long-chain non-ionic surfactant.
    Elworthy PH; Patel MS
    J Pharm Pharmacol; 1984 Sep; 36(9):565-8. PubMed ID: 6149276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of hydrophobic N-diazeniumdiolates in aqueous micellar solution.
    Mohr PC; Mohr A; Vila TP; Korth HG
    Langmuir; 2010 Aug; 26(15):12785-93. PubMed ID: 20614897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Micellar formation and micellar structure of poly(oxyethylene)-hydrogenated castor oil].
    Saito Y; Sato T
    Yakugaku Zasshi; 1992 Oct; 112(10):763-7. PubMed ID: 1469607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of benzalkonium chloride on the dissolution rate behavior of several solid-phase preparations of cholesterol in bile acid solutions.
    Feld KM; Higuchi WI; Su CC
    J Pharm Sci; 1982 Feb; 71(2):182-8. PubMed ID: 7062241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the hydrophilic head size and hydrophobic tail length of surfactants on the ability of micelles to stabilize citral.
    Hong CR; Park SJ; Choi SJ
    J Sci Food Agric; 2016 Jul; 96(9):3227-32. PubMed ID: 26493760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic study of griseofulvin dissolution into surfactant solutions under laminar flow conditions.
    Rao VM; Lin M; Larive CK; Southard MZ
    J Pharm Sci; 1997 Oct; 86(10):1132-7. PubMed ID: 9344170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution kinetics of griseofulvin in mixed micellar solutions.
    de Smidt JH; Grit M; Crommelin DJ
    J Pharm Sci; 1994 Sep; 83(9):1209-12. PubMed ID: 7830232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of novel cationic bile salts in cholesterol crystallization and solubilization in vitro.
    Bhat S; Leikin-Gobbi D; Konikoff FM; Maitra U
    Biochim Biophys Acta; 2006 Oct; 1760(10):1489-96. PubMed ID: 16919881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile salt micelle can sustain more cholesterol in the intermicellar aqueous phase than the maximal aqueous solubility.
    Chijiiwa K; Nagai M
    Arch Biochem Biophys; 1989 May; 270(2):472-7. PubMed ID: 2705774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid crystal solubilization of cholesterol: potential method for gallstone dissolution.
    Bogardus JB
    J Pharm Sci; 1983 Apr; 72(4):338-41. PubMed ID: 6864466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characteristics of pH-sensitive poly(L-histidine)-b-poly(ethylene glycol)/poly(L-lactide)-b-poly(ethylene glycol) mixed micelles.
    Yin H; Lee ES; Kim D; Lee KH; Oh KT; Bae YH
    J Control Release; 2008 Mar; 126(2):130-8. PubMed ID: 18187224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.