BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 30033364)

  • 1. Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
    Borges AL; Zhang JY; Rollins MF; Osuna BA; Wiedenheft B; Bondy-Denomy J
    Cell; 2018 Aug; 174(4):917-925.e10. PubMed ID: 30033364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.
    Landsberger M; Gandon S; Meaden S; Rollie C; Chevallereau A; Chabas H; Buckling A; Westra ER; van Houte S
    Cell; 2018 Aug; 174(4):908-916.e12. PubMed ID: 30033365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
    Li Y; Bondy-Denomy J
    Cell Host Microbe; 2021 May; 29(5):704-714. PubMed ID: 33444542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
    Mendoza SD; Nieweglowska ES; Govindarajan S; Leon LM; Berry JD; Tiwari A; Chaikeeratisak V; Pogliano J; Agard DA; Bondy-Denomy J
    Nature; 2020 Jan; 577(7789):244-248. PubMed ID: 31819262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa.
    Pawluk A; Bondy-Denomy J; Cheung VH; Maxwell KL; Davidson AR
    mBio; 2014 Apr; 5(2):e00896. PubMed ID: 24736222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa.
    León LM; Park AE; Borges AL; Zhang JY; Bondy-Denomy J
    Nucleic Acids Res; 2021 Feb; 49(4):2114-2125. PubMed ID: 33544853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance.
    Alseth EO; Pursey E; Luján AM; McLeod I; Rollie C; Westra ER
    Nature; 2019 Oct; 574(7779):549-552. PubMed ID: 31645729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and mechanistic insights into the CRISPR inhibition of AcrIF7.
    Kim I; Koo J; An SY; Hong S; Ka D; Kim EH; Bae E; Suh JY
    Nucleic Acids Res; 2020 Sep; 48(17):9959-9968. PubMed ID: 32810226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
    Trasanidou D; Gerós AS; Mohanraju P; Nieuwenweg AC; Nobrega FL; Staals RHJ
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription.
    Stanley SY; Borges AL; Chen KH; Swaney DL; Krogan NJ; Bondy-Denomy J; Davidson AR
    Cell; 2019 Sep; 178(6):1452-1464.e13. PubMed ID: 31474367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression.
    Wiegand T; Karambelkar S; Bondy-Denomy J; Wiedenheft B
    Annu Rev Microbiol; 2020 Sep; 74():21-37. PubMed ID: 32503371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Anti-CRISPR Locus Repression by a Bi-functional Cas9 Inhibitor.
    Osuna BA; Karambelkar S; Mahendra C; Sarbach A; Johnson MC; Kilcher S; Bondy-Denomy J
    Cell Host Microbe; 2020 Jul; 28(1):23-30.e5. PubMed ID: 32325051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The diversity-generating benefits of a prokaryotic adaptive immune system.
    van Houte S; Ekroth AK; Broniewski JM; Chabas H; Ashby B; Bondy-Denomy J; Gandon S; Boots M; Paterson S; Buckling A; Westra ER
    Nature; 2016 Apr; 532(7599):385-8. PubMed ID: 27074511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition.
    Dimitriu T; Kurilovich E; Łapińska U; Severinov K; Pagliara S; Szczelkun MD; Westra ER
    Cell Host Microbe; 2022 Jan; 30(1):31-40.e5. PubMed ID: 34932986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defenses.
    Pons BJ; Dimitriu T; Westra ER; van Houte S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2216084120. PubMed ID: 36669116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
    Watson BNJ; Steens JA; Staals RHJ; Westra ER; van Houte S
    Cell Host Microbe; 2021 May; 29(5):715-725. PubMed ID: 33984274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecology and evolution of phages encoding anti-CRISPR proteins.
    Pons BJ; van Houte S; Westra ER; Chevallereau A
    J Mol Biol; 2023 Apr; 435(7):167974. PubMed ID: 36690071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.