BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 30033365)

  • 1. Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.
    Landsberger M; Gandon S; Meaden S; Rollie C; Chevallereau A; Chabas H; Buckling A; Westra ER; van Houte S
    Cell; 2018 Aug; 174(4):908-916.e12. PubMed ID: 30033365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
    Borges AL; Zhang JY; Rollins MF; Osuna BA; Wiedenheft B; Bondy-Denomy J
    Cell; 2018 Aug; 174(4):917-925.e10. PubMed ID: 30033364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
    Li Y; Bondy-Denomy J
    Cell Host Microbe; 2021 May; 29(5):704-714. PubMed ID: 33444542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance.
    Alseth EO; Pursey E; Luján AM; McLeod I; Rollie C; Westra ER
    Nature; 2019 Oct; 574(7779):549-552. PubMed ID: 31645729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defenses.
    Pons BJ; Dimitriu T; Westra ER; van Houte S
    Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2216084120. PubMed ID: 36669116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas immunity leads to a coevolutionary arms race between Streptococcus thermophilus and lytic phage.
    Common J; Morley D; Westra ER; van Houte S
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180098. PubMed ID: 30905285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diversity-generating benefits of a prokaryotic adaptive immune system.
    van Houte S; Ekroth AK; Broniewski JM; Chabas H; Ashby B; Bondy-Denomy J; Gandon S; Boots M; Paterson S; Buckling A; Westra ER
    Nature; 2016 Apr; 532(7599):385-8. PubMed ID: 27074511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa.
    Pawluk A; Bondy-Denomy J; Cheung VH; Maxwell KL; Davidson AR
    mBio; 2014 Apr; 5(2):e00896. PubMed ID: 24736222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition.
    Dimitriu T; Kurilovich E; Łapińska U; Severinov K; Pagliara S; Szczelkun MD; Westra ER
    Cell Host Microbe; 2022 Jan; 30(1):31-40.e5. PubMed ID: 34932986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecology and evolution of phages encoding anti-CRISPR proteins.
    Pons BJ; van Houte S; Westra ER; Chevallereau A
    J Mol Biol; 2023 Apr; 435(7):167974. PubMed ID: 36690071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa.
    León LM; Park AE; Borges AL; Zhang JY; Bondy-Denomy J
    Nucleic Acids Res; 2021 Feb; 49(4):2114-2125. PubMed ID: 33544853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa.
    Ahator SD; Sagar S; Zhu M; Wang J; Zhang LH
    mSystems; 2022 Aug; 7(4):e0009222. PubMed ID: 35699339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription.
    Stanley SY; Borges AL; Chen KH; Swaney DL; Krogan NJ; Bondy-Denomy J; Davidson AR
    Cell; 2019 Sep; 178(6):1452-1464.e13. PubMed ID: 31474367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.
    Bondy-Denomy J; Pawluk A; Maxwell KL; Davidson AR
    Nature; 2013 Jan; 493(7432):429-32. PubMed ID: 23242138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Acr-mediated immunosuppression in
    Pons BJ; Westra ER; van Houte S
    MethodsX; 2023; 10():101941. PubMed ID: 36504499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of temperate phages drives loss of type I CRISPR-Cas systems.
    Rollie C; Chevallereau A; Watson BNJ; Chyou TY; Fradet O; McLeod I; Fineran PC; Brown CM; Gandon S; Westra ER
    Nature; 2020 Feb; 578(7793):149-153. PubMed ID: 31969710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of phage genetic diversity on bacterial resistance evolution.
    Broniewski JM; Meaden S; Paterson S; Buckling A; Westra ER
    ISME J; 2020 Mar; 14(3):828-836. PubMed ID: 31896785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa.
    Qin S; Liu Y; Chen Y; Hu J; Xiao W; Tang X; Li G; Lin P; Pu Q; Wu Q; Zhou C; Wang B; Gao P; Wang Z; Yan A; Nadeem K; Xia Z; Wu M
    Microbiol Spectr; 2022 Oct; 10(5):e0160222. PubMed ID: 35972246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity.
    Watson BNJ; Vercoe RB; Salmond GPC; Westra ER; Staals RHJ; Fineran PC
    Nat Commun; 2019 Dec; 10(1):5526. PubMed ID: 31797922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.