These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

626 related articles for article (PubMed ID: 30033368)

  • 21. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster.
    Hayashi TT; MacKenzie AJ; Ganguly I; Ellis KE; Smihula HM; Jacob MS; Litwin-Kumar A; Caron SJC
    Curr Biol; 2022 Sep; 32(18):4000-4012.e5. PubMed ID: 35977547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Circuit Structure on Odor Representation in the Insect Olfactory System.
    Rajagopalan A; Assisi C
    eNeuro; 2020; 7(3):. PubMed ID: 32345734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and Hygrosensory Neurons in the Adult Drosophila Brain.
    Marin EC; Büld L; Theiss M; Sarkissian T; Roberts RJV; Turnbull R; Tamimi IFM; Pleijzier MW; Laursen WJ; Drummond N; Schlegel P; Bates AS; Li F; Landgraf M; Costa M; Bock DD; Garrity PA; Jefferis GSXE
    Curr Biol; 2020 Aug; 30(16):3167-3182.e4. PubMed ID: 32619476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Input-timing-dependent plasticity at incoming synapses of the mushroom body facilitates olfactory learning in Drosophila.
    Qiao J; Yang S; Geng H; Yung WH; Ke Y
    Curr Biol; 2022 Nov; 32(22):4869-4880.e4. PubMed ID: 36265490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circuits for integrating learned and innate valences in the insect brain.
    Eschbach C; Fushiki A; Winding M; Afonso B; Andrade IV; Cocanougher BT; Eichler K; Gepner R; Si G; Valdes-Aleman J; Fetter RD; Gershow M; Jefferis GS; Samuel AD; Truman JW; Cardona A; Zlatic M
    Elife; 2021 Nov; 10():. PubMed ID: 34755599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complete connectome of a learning and memory centre in an insect brain.
    Eichler K; Li F; Litwin-Kumar A; Park Y; Andrade I; Schneider-Mizell CM; Saumweber T; Huser A; Eschbach C; Gerber B; Fetter RD; Truman JW; Priebe CE; Abbott LF; Thum AS; Zlatic M; Cardona A
    Nature; 2017 Aug; 548(7666):175-182. PubMed ID: 28796202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interruptive effect of electric shock on odor response requires mushroom bodies in Drosophila melanogaster.
    Song W; Zhao L; Tao Y; Guo X; Jia J; He L; Huang Y; Zhu Y; Chen P; Qin H
    Genes Brain Behav; 2019 Feb; 18(2):e12488. PubMed ID: 29808570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cellular architecture of memory modules in
    Hafez OA; Escribano B; Ziegler RL; Hirtz JJ; Niebur E; Pielage J
    Elife; 2023 Mar; 12():. PubMed ID: 36916672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution.
    Pech U; Pooryasin A; Birman S; Fiala A
    J Comp Neurol; 2013 Dec; 521(17):3992-4026. PubMed ID: 23784863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized inhibition in the
    Amin H; Apostolopoulou AA; Suárez-Grimalt R; Vrontou E; Lin AC
    Elife; 2020 Sep; 9():. PubMed ID: 32955437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning from connectomics on the fly.
    Schlegel P; Costa M; Jefferis GS
    Curr Opin Insect Sci; 2017 Dec; 24():96-105. PubMed ID: 29208230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olfactory representations by Drosophila mushroom body neurons.
    Turner GC; Bazhenov M; Laurent G
    J Neurophysiol; 2008 Feb; 99(2):734-46. PubMed ID: 18094099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Essential role of the mushroom body in context-dependent CO₂ avoidance in Drosophila.
    Bräcker LB; Siju KP; Varela N; Aso Y; Zhang M; Hein I; Vasconcelos ML; Grunwald Kadow IC
    Curr Biol; 2013 Jul; 23(13):1228-34. PubMed ID: 23770186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The wiring diagram of a glomerular olfactory system.
    Berck ME; Khandelwal A; Claus L; Hernandez-Nunez L; Si G; Tabone CJ; Li F; Truman JW; Fetter RD; Louis M; Samuel AD; Cardona A
    Elife; 2016 May; 5():. PubMed ID: 27177418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The neural basis for a persistent internal state in
    Deutsch D; Pacheco D; Encarnacion-Rivera L; Pereira T; Fathy R; Clemens J; Girardin C; Calhoun A; Ireland E; Burke A; Dorkenwald S; McKellar C; Macrina T; Lu R; Lee K; Kemnitz N; Ih D; Castro M; Halageri A; Jordan C; Silversmith W; Wu J; Seung HS; Murthy M
    Elife; 2020 Nov; 9():. PubMed ID: 33225998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Connectomics: Bringing Fly Neural Circuits into Focus.
    Lizbinski KM; Jeanne JM
    Curr Biol; 2020 Aug; 30(16):R944-R947. PubMed ID: 32810456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Connectome of the fly visual circuitry.
    Takemura SY
    Microscopy (Oxf); 2015 Feb; 64(1):37-44. PubMed ID: 25525121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila.
    Otto N; Pleijzier MW; Morgan IC; Edmondson-Stait AJ; Heinz KJ; Stark I; Dempsey G; Ito M; Kapoor I; Hsu J; Schlegel PM; Bates AS; Feng L; Costa M; Ito K; Bock DD; Rubin GM; Jefferis GSXE; Waddell S
    Curr Biol; 2020 Aug; 30(16):3200-3211.e8. PubMed ID: 32619479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory.
    Doll CA; Broadie K
    Development; 2015 Apr; 142(7):1346-56. PubMed ID: 25804740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The
    Luan H; Diao F; Scott RL; White BH
    Front Neural Circuits; 2020; 14():603397. PubMed ID: 33240047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.