These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30033395)

  • 41. Lactose characteristics and the generation of the aerosol.
    Pilcer G; Wauthoz N; Amighi K
    Adv Drug Deliv Rev; 2012 Mar; 64(3):233-56. PubMed ID: 21616107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Overcoming dose limitations using the orbital(®) multi-breath dry powder inhaler.
    Young PM; Crapper J; Philips G; Sharma K; Chan HK; Traini D
    J Aerosol Med Pulm Drug Deliv; 2014 Apr; 27(2):138-47. PubMed ID: 24004178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Device Design and Formulation on the In Vitro Comparability for Multi-Unit Dose Dry Powder Inhalers.
    Shur J; Saluja B; Lee S; Tibbatts J; Price R
    AAPS J; 2015 Sep; 17(5):1105-16. PubMed ID: 25956383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical Characterization of Tobramycin Inhalation Powder: I. Rational Design of a Stable Engineered-Particle Formulation for Delivery to the Lungs.
    Miller DP; Tan T; Tarara TE; Nakamura J; Malcolmson RJ; Weers JG
    Mol Pharm; 2015 Aug; 12(8):2582-93. PubMed ID: 26052676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supercritical Fluid Particle Design of DPI Formulations (Review).
    Sun Y
    Curr Pharm Des; 2015; 21(19):2516-42. PubMed ID: 25876911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.
    Aquino RP; Prota L; Auriemma G; Santoro A; Mencherini T; Colombo G; Russo P
    Int J Pharm; 2012 Apr; 426(1-2):100-107. PubMed ID: 22301426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.
    Li X; Vogt FG; Hayes D; Mansour HM
    Eur J Pharm Sci; 2014 Feb; 52():191-205. PubMed ID: 24215736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dose emission characteristics of placebo PulmoSphere® particles are unaffected by a subject's inhalation maneuver.
    Weers J; Ung K; Le J; Rao N; Ament B; Axford G; Maltz D; Chan L
    J Aerosol Med Pulm Drug Deliv; 2013 Feb; 26(1):56-68. PubMed ID: 22691109
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of dry powder inhalers to improve patient outcomes: it's not just about the device.
    Weers JG
    Expert Opin Drug Deliv; 2024 Mar; 21(3):365-380. PubMed ID: 38630860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pharmacokinetics and pharmacodynamics of fluticasone propionate and salmeterol delivered as a combination dry powder from a capsule-based inhaler and a multidose inhaler in asthma and COPD patients.
    Daley-Yates PT; Mehta R; Chan RH; Despa SX; Louey MD
    J Aerosol Med Pulm Drug Deliv; 2014 Aug; 27(4):279-89. PubMed ID: 24074143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2010 Nov; 76(3):464-9. PubMed ID: 20854906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formulation of novel dry powder inhalation for fluticasone propionate and salmeterol xinafoate with capsule-based device.
    Kim KS; Kim JH; Jin SG; Kim DW; Kim JO; Yong CS; Youn YS; Oh KT; Woo JS; Choi HG
    Pharm Dev Technol; 2018 Feb; 23(2):158-166. PubMed ID: 28612675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dry powder aerosol containing muco-inert particles for excipient enhanced growth pulmonary drug delivery.
    Chai G; Hassan A; Meng T; Lou L; Ma J; Simmers R; Zhou L; Rubin BK; Zhou QT; Longest PW; Hindle M; Xu Q
    Nanomedicine; 2020 Oct; 29():102262. PubMed ID: 32623017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Formulation of new generation drug delivery system for dry powder inhalation.].
    Chvatal A; Szabo B; Szabo-Revesz P; Ambrus R
    Acta Pharm Hung; 2016; 86(3):75-83. PubMed ID: 29489079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a New High-Dose Dry Powder Inhaler (DPI) Based on a Fluidized Bed Design.
    Farkas DR; Hindle M; Longest PW
    Ann Biomed Eng; 2015 Nov; 43(11):2804-15. PubMed ID: 25986955
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation, characterization and pulmonary pharmacokinetics of a new inhalable zanamivir dry powder.
    Cai X; Yang Y; Xie X; Yu F; Yang Y; Yang Z; Zhang T; Mei X
    Drug Deliv; 2016 Jul; 23(6):1962-71. PubMed ID: 26066037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Design of Spray-dried Porous Particles for Sugar-based Dry Powder Inhaler Formulation].
    Kadota K
    Yakugaku Zasshi; 2018; 138(9):1163-1167. PubMed ID: 30175760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Respiratory Tract: Structure and Attractions for Drug Delivery Using Dry Powder Inhalers.
    ElKasabgy NA; Adel IM; Elmeligy MF
    AAPS PharmSciTech; 2020 Aug; 21(7):238. PubMed ID: 32827062
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A levodopa dry powder inhaler for the treatment of Parkinson's disease patients in off periods.
    Luinstra M; Grasmeijer F; Hagedoorn P; Moes JR; Frijlink HW; de Boer AH
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):22-9. PubMed ID: 26453913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.