These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30033524)

  • 1. Structure and specificity of several triclocarban-binding single domain camelid antibody fragments.
    Tabares-da Rosa S; Wogulis LA; Wogulis MD; González-Sapienza G; Wilson DK
    J Mol Recognit; 2019 Jan; 32(1):e2755. PubMed ID: 30033524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop.
    Fanning SW; Horn JR
    Protein Sci; 2011 Jul; 20(7):1196-207. PubMed ID: 21557375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the mechanism of single domain VHH antibody binding to cortisol.
    Ding L; Wang Z; Zhong P; Jiang H; Zhao Z; Zhang Y; Ren Z; Ding Y
    FEBS Lett; 2019 Jun; 593(11):1248-1256. PubMed ID: 31049949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the non-hypervariable FR3 D-E loop in single-domain antibody recognition of haptens and carbohydrates.
    Henry KA; Hussack G; Kumaran J; Gilbert M; MacKenzie CR; Sulea T; Arbabi-Ghahroudi M
    J Mol Recognit; 2019 Nov; 32(11):e2805. PubMed ID: 31423671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of nanobody sequence and structure data.
    Mitchell LS; Colwell LJ
    Proteins; 2018 Jul; 86(7):697-706. PubMed ID: 29569425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical shift assignments of a camelid nanobody against aflatoxin B
    Nie Y; Li S; Zhu J; Hu R; Liu M; He T; Yang Y
    Biomol NMR Assign; 2019 Apr; 13(1):75-78. PubMed ID: 30328057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops.
    Decanniere K; Desmyter A; Lauwereys M; Ghahroudi MA; Muyldermans S; Wyns L
    Structure; 1999 Apr; 7(4):361-70. PubMed ID: 10196124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the binding loops configuration and surface adaptation of different crystallized single-domain antibodies in response to various antigens.
    Al Qaraghuli MM; Ferro VA
    J Mol Recognit; 2017 Apr; 30(4):. PubMed ID: 27862476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and specificity of the anti-digoxin antibody 40-50.
    Jeffrey PD; Schildbach JF; Chang CY; Kussie PH; Margolies MN; Sheriff S
    J Mol Biol; 1995 Apr; 248(2):344-60. PubMed ID: 7739045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor InlB.
    Mendoza MN; Jian M; King MT; Brooks CL
    Protein Sci; 2020 Apr; 29(4):1004-1017. PubMed ID: 31981247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains.
    Schmitz KR; Bagchi A; Roovers RC; van Bergen en Henegouwen PM; Ferguson KM
    Structure; 2013 Jul; 21(7):1214-24. PubMed ID: 23791944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobody binding to a conserved epitope promotes norovirus particle disassembly.
    Koromyslova AD; Hansman GS
    J Virol; 2015 Mar; 89(5):2718-30. PubMed ID: 25520510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Camelid heavy-chain variable domains provide efficient combining sites to haptens.
    Spinelli S; Frenken LG; Hermans P; Verrips T; Brown K; Tegoni M; Cambillau C
    Biochemistry; 2000 Feb; 39(6):1217-22. PubMed ID: 10684599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches.
    Farasat A; Rahbarizadeh F; Hosseinzadeh G; Sajjadi S; Kamali M; Keihan AH
    J Biomol Struct Dyn; 2017 Jun; 35(8):1710-1728. PubMed ID: 27691399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Two-Step Approach for the Design and Generation of Nanobodies.
    Wagner HJ; Wehrle S; Weiss E; Cavallari M; Weber W
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold.
    Vincke C; Loris R; Saerens D; Martinez-Rodriguez S; Muyldermans S; Conrath K
    J Biol Chem; 2009 Jan; 284(5):3273-3284. PubMed ID: 19010777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of an engineered dual-specific antibody: conformational diversity leads to a hypervariable loop metal-binding site.
    Fanning SW; Walter R; Horn JR
    Protein Eng Des Sel; 2014 Oct; 27(10):391-7. PubMed ID: 25143596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation.
    Kunz P; Ortale A; Mücke N; Zinner K; Hoheisel JD
    Protein Eng Des Sel; 2019 Dec; 32(5):241-249. PubMed ID: 31340035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative analysis of the immunological evolution of antibody 28B4.
    Yin J; Mundorff EC; Yang PL; Wendt KU; Hanway D; Stevens RC; Schultz PG
    Biochemistry; 2001 Sep; 40(36):10764-73. PubMed ID: 11535051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.