These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30033574)

  • 1. The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production.
    Hernández-Sánchez D; Cervantes-Gómez D; Ramírez-Bribiesca JE; Cobos-Peralta M; Pinto-Ruiz R; Astigarraga L; Gere JI
    J Sci Food Agric; 2019 Feb; 99(3):1073-1077. PubMed ID: 30033574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.
    Paula EM; Monteiro HF; Silva LG; Benedeti PDB; Daniel JLP; Shenkoru T; Broderick GA; Faciola AP
    J Dairy Sci; 2017 Jul; 100(7):5281-5292. PubMed ID: 28456405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility.
    Yang K; Wei C; Zhao GY; Xu ZW; Lin SX
    J Anim Physiol Anim Nutr (Berl); 2017 Apr; 101(2):302-310. PubMed ID: 27272696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur, fresh cassava root and urea independently enhanced gas production, ruminal characteristics and in vitro degradability.
    Sumadong P; Cherdthong A; So S; Wanapat M
    BMC Vet Res; 2021 Sep; 17(1):304. PubMed ID: 34503491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield.
    Bayat AR; Tapio I; Vilkki J; Shingfield KJ; Leskinen H
    J Dairy Sci; 2018 Feb; 101(2):1136-1151. PubMed ID: 29224879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graded substitution of grains with bakery by-products modulates ruminal fermentation, nutrient degradation, and microbial community composition in vitro.
    Humer E; Aditya S; Kaltenegger A; Klevenhusen F; Petri RM; Zebeli Q
    J Dairy Sci; 2018 Apr; 101(4):3085-3098. PubMed ID: 29428759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers.
    Mohammed N; Ajisaka N; Lila ZA; Hara K; Mikuni K; Hara K; Kanda S; Itabashi H
    J Anim Sci; 2004 Jun; 82(6):1839-46. PubMed ID: 15217012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows.
    Holtshausen L; Chaves AV; Beauchemin KA; McGinn SM; McAllister TA; Odongo NE; Cheeke PR; Benchaar C
    J Dairy Sci; 2009 Jun; 92(6):2809-21. PubMed ID: 19448015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crude saponin extract from Sesbania grandiflora (L.) Pers pod meal could modulate ruminal fermentation, and protein utilization, as well as mitigate methane production.
    Unnawong N; Cherdthong A; So S
    Trop Anim Health Prod; 2021 Mar; 53(2):196. PubMed ID: 33674897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets.
    Philippeau C; Lettat A; Martin C; Silberberg M; Morgavi DP; Ferlay A; Berger C; Nozière P
    J Dairy Sci; 2017 Apr; 100(4):2637-2650. PubMed ID: 28161181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of orally administered therapeutic drugs on the fermentation processes in the rumen fluid of ruminating cattle (in vitro). 6. Copper sulfate].
    Odenkirchen S; Höltershinken M; Scholz H
    Dtsch Tierarztl Wochenschr; 1994 Jan; 101(1):16-8. PubMed ID: 8131726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability.
    Al-Sagheer AA; Elwakeel EA; Ahmed MG; Sallam SMA
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31450-31458. PubMed ID: 30203345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sunflower Oil and Nannochloropsis oculata Microalgae as Sources of Unsaturated Fatty Acids for Mitigation of Methane Production and Enhancing Diets' Nutritive Value.
    Gomaa AS; Kholif AE; Kholif AM; Salama R; El-Alamy HA; Olafadehan OA
    J Agric Food Chem; 2018 Feb; 66(8):1751-1759. PubMed ID: 29397713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulated nitrate replacing soybean meal changes in vitro ruminal fermentation and methane production in diets differing in concentrate to forage ratio.
    Natel AS; Abdalla AL; de Araujo RC; McManus C; Paim TDP; de Abdalla Filho AL; Louvandini P; Nazato C
    Anim Sci J; 2019 Oct; 90(10):1350-1361. PubMed ID: 31393669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets.
    Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS
    Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fibrolytic enzyme additive for lactating Holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions.
    Chung YH; Zhou M; Holtshausen L; Alexander TW; McAllister TA; Guan LL; Oba M; Beauchemin KA
    J Dairy Sci; 2012 Mar; 95(3):1419-27. PubMed ID: 22365224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of dose dependent Escherichia coli as ruminal anti-microflora agent to mitigate biogases production in prickly pear cactus flour based diet.
    Elghandour MMY; Khusro A; Salem AZM; Mariezcurrena-Berasain MA; Camacho Díaz LM; Cipriano-Salazar M
    Microb Pathog; 2018 Feb; 115():208-215. PubMed ID: 29278783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.