These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30033688)

  • 41. Response speed measurements on the psychomotor vigilance test: how precise is precise enough?
    Basner M; Moore TM; Nasrini J; Gur RC; Dinges DF
    Sleep; 2021 Jan; 44(1):. PubMed ID: 32556295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational Modeling of the Effects of Sleep Deprivation on the Vigilance Decrement.
    Patterson RE; Lochtefeld D; Larson KG; Christensen-Salem A
    Hum Factors; 2019 Nov; 61(7):1099-1111. PubMed ID: 30908091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time course of sleep inertia after nighttime and daytime sleep episodes.
    Achermann P; Werth E; Dijk DJ; Borbely AA
    Arch Ital Biol; 1995 Dec; 134(1):109-19. PubMed ID: 8919196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. When to sleep and consume caffeine to boost alertness.
    Vital-Lopez FG; Doty TJ; Reifman J
    Sleep; 2024 Oct; 47(10):. PubMed ID: 38877981
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Can a mathematical model predict an individual's trait-like response to both total and partial sleep loss?
    Ramakrishnan S; Lu W; Laxminarayan S; Wesensten NJ; Rupp TL; Balkin TJ; Reifman J
    J Sleep Res; 2015 Jun; 24(3):262-9. PubMed ID: 25559055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.
    Ramakrishnan S; Wesensten NJ; Kamimori GH; Moon JE; Balkin TJ; Reifman J
    Sleep; 2016 Oct; 39(10):1827-1841. PubMed ID: 27397562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alertness and psychomotor performance levels of marine pilots on an irregular work roster.
    Boudreau P; Lafrance S; Boivin DB
    Chronobiol Int; 2018 Jun; 35(6):773-784. PubMed ID: 29787295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Maintaining alertness and performance during sleep deprivation: modafinil versus caffeine.
    Wesensten NJ; Belenky G; Kautz MA; Thorne DR; Reichardt RM; Balkin TJ
    Psychopharmacology (Berl); 2002 Jan; 159(3):238-47. PubMed ID: 11862356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sustained vigilance is negatively affected by mild and acute sleep loss reflected by reduced capacity for decision making, motor preparation, and execution.
    Stojanoski B; Benoit A; Van Den Berg N; Ray LB; Owen AM; Shahidi Zandi A; Quddus A; Comeau FJE; Fogel SM
    Sleep; 2019 Jan; 42(1):. PubMed ID: 30346590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eating Decisions Based on Alertness Levels After a Single Night of Sleep Manipulation: A Randomized Clinical Trial.
    Pardi D; Buman M; Black J; Lammers GJ; Zeitzer JM
    Sleep; 2017 Feb; 40(2):. PubMed ID: 28364494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved vigilance after sodium oxybate treatment in narcolepsy: a comparison between in-field and in-laboratory measurements.
    van Schie MK; Werth E; Lammers GJ; Overeem S; Baumann CR; Fronczek R
    J Sleep Res; 2016 Aug; 25(4):486-96. PubMed ID: 26909768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation.
    Kong D; Asplund CL; Ling A; Chee MW
    Sleep; 2015 Aug; 38(8):1219-27. PubMed ID: 25845689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Planning Ability and Alertness After Nap Deprivation: Beneficial Effects of Acute Moderate-Intensity Aerobic Exercise Greater Than Sitting Naps.
    Du J; Huang Y; Zhao Z; Wang Y; Xu S; Zhang R; Xiao L; Xu J; Wang H; Su T; Tang Y
    Front Public Health; 2022; 10():861923. PubMed ID: 35400075
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An ensemble mixed effects model of sleep loss and performance.
    Cochrane C; Ba D; Klerman EB; St Hilaire MA
    J Theor Biol; 2021 Jan; 509():110497. PubMed ID: 32966825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classifying performance impairment in response to sleep loss using pattern recognition algorithms on single session testing.
    St Hilaire MA; Sullivan JP; Anderson C; Cohen DA; Barger LK; Lockley SW; Klerman EB
    Accid Anal Prev; 2013 Jan; 50():992-1002. PubMed ID: 22959616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiple sclerosis fatigue is associated with reduced psychomotor vigilance.
    Rotstein D; O'Connor P; Lee L; Murray BJ
    Can J Neurol Sci; 2012 Mar; 39(2):180-4. PubMed ID: 22343150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessing nighttime vigilance through a three-letter cancellation task (3-LCT): effects of daytime sleep with temazepam or placebo.
    Casagrande M; Ferrara M; Curcio G; Porcù S
    Physiol Behav; 1999 Dec 1-15; 68(1-2):251-6. PubMed ID: 10627088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcranial direct current stimulation versus caffeine as a fatigue countermeasure.
    McIntire LK; McKinley RA; Nelson JM; Goodyear C
    Brain Stimul; 2017; 10(6):1070-1078. PubMed ID: 28851554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.
    Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land.
    Lieberman HR; Tharion WJ; Shukitt-Hale B; Speckman KL; Tulley R
    Psychopharmacology (Berl); 2002 Nov; 164(3):250-61. PubMed ID: 12424548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.