These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30033936)

  • 1. High-spatial-resolution x-ray fluorescence tomography with spectrally matched nanoparticles.
    Larsson JC; Vogt C; Vågberg W; Toprak MS; Dzieran J; Arsenian-Henriksson M; Hertz HM
    Phys Med Biol; 2018 Aug; 63(16):164001. PubMed ID: 30033936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal In-Vivo X-Ray Fluorescence Computed Tomography With Molybdenum Nanoparticles.
    Shaker K; Vogt C; Katsu-Jimenez Y; Kuiper RV; Andersson K; Li Y; Larsson JC; Rodriguez-Garcia A; Toprak MS; Arsenian-Henriksson M; Hertz HM
    IEEE Trans Med Imaging; 2020 Dec; 39(12):3910-3919. PubMed ID: 32746133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory x-ray fluorescence tomography for high-resolution nanoparticle bio-imaging.
    Hertz HM; Larsson JC; Lundström U; Larsson DH; Vogt C
    Opt Lett; 2014 May; 39(9):2790-3. PubMed ID: 24784104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Library of Potential Nanoparticle Contrast Agents for X-Ray Fluorescence Tomography Bioimaging.
    Li Y; Shaker K; Larsson JC; Vogt C; Hertz HM; Toprak MS
    Contrast Media Mol Imaging; 2018; 2018():8174820. PubMed ID: 30686945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Imaging of Gd Nanoparticles in Mice Using Benchtop Cone-Beam X-ray Fluorescence Computed Tomography System.
    Zhang S; Li L; Chen J; Chen Z; Zhang W; Lu H
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual imaging modality of fluorescence and transmission X-rays for gold nanoparticle-injected living mice.
    Kim T; Lee WS; Jeon M; Kim H; Eom M; Jung S; Im HJ; Ye SJ
    Med Phys; 2023 Jan; 50(1):529-539. PubMed ID: 36367111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays.
    Cheong SK; Jones BL; Siddiqi AK; Liu F; Manohar N; Cho SH
    Phys Med Biol; 2010 Feb; 55(3):647-62. PubMed ID: 20071757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans.
    Vernekohl D; Ahmad M; Chinn G; Xing L
    Phys Med Biol; 2016 Dec; 61(24):8521-8540. PubMed ID: 27845933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sheet beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles.
    Dunning CAS; Bazalova-Carter M
    Med Phys; 2018 Jun; 45(6):2572-2582. PubMed ID: 29604070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom.
    Ren L; Wu D; Li Y; Wang G; Wu X; Liu H
    Med Phys; 2014 Mar; 41(3):031902. PubMed ID: 24593720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation.
    Larsson DH; Lundström U; Westermark UK; Arsenian Henriksson M; Burvall A; Hertz HM
    Med Phys; 2013 Feb; 40(2):021909. PubMed ID: 23387757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray luminescence computed tomography via selective excitation: a feasibility study.
    Pratx G; Carpenter CM; Sun C; Xing L
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1992-9. PubMed ID: 20615807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray fluorescence tomographic system design and image reconstruction.
    Cong W; Shen H; Cao G; Liu H; Wang G
    J Xray Sci Technol; 2013; 21(1):1-8. PubMed ID: 23507848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study.
    Jung S; Sung W; Ye SJ
    Int J Nanomedicine; 2017; 12():5805-5817. PubMed ID: 28860750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography.
    Manohar N; Reynoso FJ; Diagaradjane P; Krishnan S; Cho SH
    Sci Rep; 2016 Feb; 6():22079. PubMed ID: 26912068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold Nanoparticles by Laser Ablation for X-Ray Imaging and Protontherapy Improvements.
    Torrisi L; Restuccia N; Paterniti I
    Recent Pat Nanotechnol; 2018 Feb; 12(1):59-69. PubMed ID: 28595565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120 nm.
    Palle J; Wittig NK; Kubec A; Niese S; Rosenthal M; Burghammer M; Grünewald TA; Birkedal H
    J Struct Biol; 2020 Dec; 212(3):107631. PubMed ID: 32980520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative nanoparticle bioengineering enabled by x-ray fluorescence imaging.
    Saladino GM; Brodin B; Kakadiya R; Toprak MS; Hertz HM
    Sci Adv; 2024 Mar; 10(12):eadl2267. PubMed ID: 38517973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography.
    Cole LE; Ross RD; Tilley JM; Vargo-Gogola T; Roeder RK
    Nanomedicine (Lond); 2015 Jan; 10(2):321-41. PubMed ID: 25600973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.