BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30034015)

  • 1. Deep imaging in highly scattering media by combining reflection matrix measurement with Bessel-like beam based optical coherence tomography.
    Yang Q; Miao Y; Huo T; Li Y; Heidari E; Zhu J; Chen Z
    Appl Phys Lett; 2018 Jul; 113(1):011106. PubMed ID: 30034015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended imaging depth of en-face optical coherence tomography based on fast measurement of a reflection matrix by wide-field heterodyne detection.
    Yang Q; Cao J; Miao Y; Zhu J; Chen Z
    Opt Lett; 2020 Feb; 45(4):828-831. PubMed ID: 32058481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of penetration depth of Bessel beams for multifocal optical coherence tomography.
    Yi L; Sun L; Ming X
    Appl Opt; 2018 Jun; 57(17):4809-4814. PubMed ID: 30118096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the influence of Bessel beams on image quality in optical coherence tomography.
    Curatolo A; Munro PRT; Lorenser D; Sreekumar P; Singe CC; Kennedy BF; Sampson DD
    Sci Rep; 2016 Mar; 6():23483. PubMed ID: 27009371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities.
    Chen Y; Liu JT
    Biomed Opt Express; 2015 Apr; 6(4):1318-30. PubMed ID: 25909015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth.
    Yi L; Sun L; Ding W
    J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29076306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart optical coherence tomography for ultra-deep imaging through highly scattering media.
    Badon A; Li D; Lerosey G; Boccara AC; Fink M; Aubry A
    Sci Adv; 2016 Nov; 2(11):e1600370. PubMed ID: 27847864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
    Coquoz S; Bouwens A; Marchand PJ; Extermann J; Lasser T
    Opt Express; 2017 Nov; 25(24):30807-30819. PubMed ID: 29221107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of image artefacts on phase conjugation with spectral domain optical coherence tomography.
    Kanngiesser J; Roth B
    Opt Express; 2020 Jun; 28(12):18224-18240. PubMed ID: 32680023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially offset optical coherence tomography: Leveraging multiple scattering for high-contrast imaging at depth in turbid media.
    Untracht GR; Chen M; Wijesinghe P; Mas J; Yura HT; Marti D; Andersen PE; Dholakia K
    Sci Adv; 2023 Jul; 9(27):eadh5435. PubMed ID: 37418534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of nondiffracting Bessel beam using digital micromirror device.
    Gong L; Ren YX; Xue GS; Wang QC; Zhou JH; Zhong MC; Wang ZQ; Li YM
    Appl Opt; 2013 Jul; 52(19):4566-75. PubMed ID: 23842252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2013 Apr; 21(8):10048-61. PubMed ID: 23609710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging.
    Wen J; Xie Z; Liu S; Chen X; Tang T; Kanwal S; Zhang D
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip generation of Bessel-Gaussian beam via concentrically distributed grating arrays for long-range sensing.
    Zhi Z; Na Q; Xie Q; Chen B; Li Y; Liu X; Li X; Wang L; Lo G; Song J
    Light Sci Appl; 2023 Apr; 12(1):92. PubMed ID: 37055386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speckle-resolved optical coherence tomography for mesoscopic imaging within scattering media.
    Cua M; Blochet B; Yang C
    Biomed Opt Express; 2022 Apr; 13(4):2068-2081. PubMed ID: 35519275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy.
    Purnapatra SB; Bera S; Mondal PP
    Sci Rep; 2012; 2():692. PubMed ID: 23012646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended focal depth Fourier domain optical coherence microscopy with a Bessel-beam - LP
    Sen D; Classen A; Fernández A; Grüner-Nielsen L; Gibbs HC; Esmaeili S; Hemmer P; Baltuska A; Sokolov AV; Leitgeb RA; Verhoef AJ
    Biomed Opt Express; 2021 Dec; 12(12):7327-7337. PubMed ID: 35003836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping.
    Kim JU; Choi H; Park Y; Shin J
    Biomed Opt Express; 2018 Aug; 9(8):3883-3897. PubMed ID: 30338162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.