These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30034015)

  • 21. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels.
    Cao J; Yang Q; Miao Y; Li Y; Qiu S; Zhu Z; Wang P; Chen Z
    Light Sci Appl; 2022 Apr; 11(1):108. PubMed ID: 35462570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media.
    Lai P; Xu X; Liu H; Suzuki Y; Wang LV
    J Biomed Opt; 2011 Aug; 16(8):080505. PubMed ID: 21895305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Propagation of on-axis and off-axis Bessel beams in a gradient-index medium.
    Cao Z; Zhai C; Xu S; Chen Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Feb; 35(2):230-235. PubMed ID: 29400889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-of-flight resolved stimulated Raman scattering microscopy using counter-propagating ultraslow Bessel light bullets generation.
    Lin S; Gong L; Huang Z
    Light Sci Appl; 2024 Jul; 13(1):148. PubMed ID: 38951517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subwavelength Bessel beam arrays with high uniformity based on a metasurface.
    Wu C; Huang X; Yipeng J; Wang J; Chang-Hasnain CJ
    Appl Opt; 2024 Mar; 63(9):2234-2240. PubMed ID: 38568577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming the tradeoff between confinement and focal distance using virtual ultrasonic optical waveguides.
    Scopelliti MG; Huang H; Pediredla A; Narasimhan SG; Gkioulekas I; Chamanzar M
    Opt Express; 2020 Dec; 28(25):37459-37473. PubMed ID: 33379580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo.
    Park B; Lee H; Jeon S; Ahn J; Kim HH; Kim C
    J Biophotonics; 2019 Feb; 12(2):e201800215. PubMed ID: 30084200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distortion matrix concept for deep optical imaging in scattering media.
    Badon A; Barolle V; Irsch K; Boccara AC; Fink M; Aubry A
    Sci Adv; 2020 Jul; 6(30):eaay7170. PubMed ID: 32923603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axial resolution enhancement of light-sheet microscopy by double scanning of Bessel beam and its complementary beam.
    Jia H; Yu X; Yang Y; Zhou X; Yan S; Liu C; Lei M; Yao B
    J Biophotonics; 2019 Jan; 12(1):e201800094. PubMed ID: 30043551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using beam-offset optical coherence tomography to reconstruct backscattered photon profiles in scattering media.
    Xu W; Wang H
    Biomed Opt Express; 2022 Nov; 13(11):6124-6135. PubMed ID: 36733762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subtraction method via phase mask enables contrast enhancement in scanned Bessel light-sheet microscopy.
    Deng S; Wang P; Zhang Y; Zhou H; Yang J; Liu M
    J Opt Soc Am A Opt Image Sci Vis; 2020 Jan; 37(1):84-88. PubMed ID: 32118884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin of improved depth penetration in dual-axis optical coherence tomography: a Monte Carlo study.
    Zhao Y; Chu KK; Jelly ET; Wax A
    J Biophotonics; 2019 Jun; 12(6):e201800383. PubMed ID: 30701684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams.
    Lu JY; Greenleaf JF
    Ultrason Imaging; 1993 Apr; 15(2):134-49. PubMed ID: 8346611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced light focusing inside scattering media with shaped ultrasound.
    Mestre-TorĂ  B; Duocastella M
    Sci Rep; 2023 Jul; 13(1):11511. PubMed ID: 37460784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography.
    Lorenser D; Christian Singe C; Curatolo A; Sampson DD
    Opt Lett; 2014 Feb; 39(3):548-51. PubMed ID: 24487862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 140 GHz Ultra-Long Bessel-Like Beam with Near-Wavelength Beamwidth.
    Ok G; Park KJ
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media.
    Hsieh CL; Pu Y; Grange R; Psaltis D
    Opt Express; 2010 Jun; 18(12):12283-90. PubMed ID: 20588353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reflective axicon based energy-efficient extended depth of focus quasi-Bessel beam probe for common-path optical coherence tomography.
    Vairagi K; Gupta P; Tiwari UK; Mondal SK
    Appl Opt; 2023 Jan; 62(3):511-517. PubMed ID: 36821252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.