BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30034088)

  • 1. Controlling bacterial fouling with polyurethane/
    Xiu K; Wen J; Porteous N; Sun Y
    J Bioact Compat Polym; 2017; 32(5):542-554. PubMed ID: 30034088
    [No Abstract]   [Full Text] [Related]  

  • 2. Acyclic N-halamine-immobilized polyurethane: Preparation and antimicrobial and biofilm-controlling functions.
    Luo J; Porteous N; Lin J; Sun Y
    J Bioact Compat Polym; 2015 Mar; 30(2):157-166. PubMed ID: 26089593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling biofilm formation with an N-halamine-based polymeric additive.
    Luo J; Chen Z; Sun Y
    J Biomed Mater Res A; 2006 Jun; 77(4):823-31. PubMed ID: 16575910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric N-halamine latex emulsions for use in antimicrobial paints.
    Cao Z; Sun Y
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):494-504. PubMed ID: 20353242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications.
    Hui F; Debiemme-Chouvy C
    Biomacromolecules; 2013 Mar; 14(3):585-601. PubMed ID: 23391154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the effect of degree of hydrophilicity on tissue response of polyurethane interpenetrating polymer networks.
    Nair PD; Mohanty M; Rathinam K; Jayabalan M; Krishnamurthy VN
    Biomaterials; 1992; 13(8):537-42. PubMed ID: 1633227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of N-halamine-functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity.
    Dong A; Huang J; Lan S; Wang T; Xiao L; Wang W; Zhao T; Zheng X; Liu F; Gao G; Chen Y
    Nanotechnology; 2011 Jul; 22(29):295602. PubMed ID: 21673388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Halamine-Containing Electrospun Fibers Kill Bacteria via a Contact/Release Co-Determined Antibacterial Pathway.
    Bai R; Zhang Q; Li L; Li P; Wang YJ; Simalou O; Zhang Y; Gao G; Dong A
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31530-31540. PubMed ID: 27808500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Modification of Polyurethane Membrane with Various Hydrophilic Monomers and N-Halamine: Surface Characterization and Antimicrobial Properties Evaluation.
    Cheng CH; Liu HC; Lin JC
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of magnetically separable N-halamine nanocomposites for the improved antibacterial application.
    Dong A; Lan S; Huang J; Wang T; Zhao T; Wang W; Xiao L; Zheng X; Liu F; Gao G; Chen Y
    J Colloid Interface Sci; 2011 Dec; 364(2):333-40. PubMed ID: 21925670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated and Un-fluorinated N-halamines as Antimicrobial and Biofilm-controlling Additives for Polymers.
    Lin J; Jiang F; Wen J; Lv W; Porteous N; Deng Y; Sun Y
    Polymer (Guildf); 2015 Jun; 68():92-100. PubMed ID: 26166903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications.
    Karabanova LV; Lloyd AW; Mikhalovsky SV; Helias M; Phillips GJ; Rose SF; Mikhalovska L; Boiteux G; Sergeeva LM; Lutsyk ED; Svyatyna A
    J Mater Sci Mater Med; 2006 Dec; 17(12):1283-96. PubMed ID: 17143760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable sodium alginate-based semi-interpenetrating polymer network hydrogels for antibacterial application.
    Rao KM; Rao KS; Ramanjaneyulu G; Rao KC; Subha MC; Ha CS
    J Biomed Mater Res A; 2014 Sep; 102(9):3196-206. PubMed ID: 24151188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amine, Melamine, and Amide N-Halamines as Antimicrobial Additives for Polymers.
    Sun X; Cao Z; Porteous N; Sun Y
    Ind Eng Chem Res; 2010; 49(22):11206-11213. PubMed ID: 21088762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Interpenetrating Polymer Networks Based on Hydroxy-Ethyl Methacrylate and Poly(4-vinylpyridine)/Polybetaines, as Supports for Sorption and Release of Tetracycline.
    Gugoasa AI; Racovita S; Vasiliu S; Popa M
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected Enhancement in Antibacterial Activity of N-Halamine Polymers from Spheres to Fibers.
    Kang J; Han J; Gao Y; Gao T; Lan S; Xiao L; Zhang Y; Gao G; Chokto H; Dong A
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17516-26. PubMed ID: 26191972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control.
    Reddy TT; Kano A; Maruyama A; Hadano M; Takahara A
    Biomacromolecules; 2008 Apr; 9(4):1313-21. PubMed ID: 18355026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and microhardness study of semi interpenetrating polymer networks of polyvinyl alcohol and crosslinked polyacrylamide.
    Mishra S; Bajpai R; Katare R; Bajpai AK
    J Mater Sci Mater Med; 2006 Dec; 17(12):1305-13. PubMed ID: 17143762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing polymer nanocomposites with a semi-interpenetrating or interpenetrating network structure: toward enhanced mechanical properties.
    Wang W; Hou G; Zheng Z; Wang L; Liu J; Wu Y; Zhang L; Lyulin AV
    Phys Chem Chem Phys; 2017 Jun; 19(24):15808-15820. PubMed ID: 28569896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-halamine-decorated polystyrene nanoparticles based on 5-allylbarbituric acid: from controllable fabrication to bactericidal evaluation.
    Dong A; Huang Z; Lan S; Wang Q; Bao S; Siriguleng ; Zhang Y; Gao G; Liu F; Harnoode C
    J Colloid Interface Sci; 2014 Jan; 413():92-9. PubMed ID: 24183435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.