These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30034269)

  • 1. Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables.
    Wang L; Tchetgen Tchetgen E
    J R Stat Soc Series B Stat Methodol; 2018 Jun; 80(3):531-550. PubMed ID: 30034269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
    Shi X; Miao W; Nelson JC; Tchetgen EJT
    J R Stat Soc Series B Stat Methodol; 2020 Apr; 82(2):521-540. PubMed ID: 33376449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubly robust nonparametric instrumental variable estimators for survival outcomes.
    Lee Y; Kennedy EH; Mitra N
    Biostatistics; 2023 Apr; 24(2):518-537. PubMed ID: 34676400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding.
    Miles BCH; Shpitser I; Kanki P; Meloni S; Tchetgen EJT
    Biometrika; 2020 Mar; 107(1):159-172. PubMed ID: 33390591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumented difference-in-differences.
    Ye T; Ertefaie A; Flory J; Hennessy S; Small DS
    Biometrics; 2023 Jun; 79(2):569-581. PubMed ID: 36305081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IDENTIFICATION AND INFERENCE FOR MARGINAL AVERAGE TREATMENT EFFECT ON THE TREATED WITH AN INSTRUMENTAL VARIABLE.
    Liu L; Miao W; Sun B; Robins J; Tchetgen ET
    Stat Sin; 2020 Jul; 30(3):1517-1541. PubMed ID: 33209012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using instrumental variables to address unmeasured confounding in causal mediation analysis.
    Rudolph KE; Williams N; Díaz I
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38412300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semiparametric multiply robust multiple imputation method for causal inference.
    Gochanour B; Chen S; Beebe L; Haziza D
    Metrika; 2023 Jul; 86(5):517-542. PubMed ID: 38736753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity.
    Cui Y; Tchetgen ET
    J Am Stat Assoc; 2021; 116(533):162-173. PubMed ID: 33994604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and robust estimation of swapped direct and indirect effects: Mediation analysis with unmeasured mediator-outcome confounding and intermediate confounding.
    Tai AS; Lin SH
    Stat Med; 2022 Sep; 41(21):4143-4158. PubMed ID: 35716042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumental variable estimation of the causal hazard ratio.
    Wang L; Tchetgen Tchetgen E; Martinussen T; Vansteelandt S
    Biometrics; 2023 Jun; 79(2):539-550. PubMed ID: 36377509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the Causal Effect of Treatment in Observational Studies with Survival Time Endpoints and Unmeasured Confounding.
    Choi J; O'Malley AJ
    J R Stat Soc Ser C Appl Stat; 2017 Jan; 66(1):159-185. PubMed ID: 30686843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of causal quantile effects with a binary instrumental variable and censored data.
    Wei B; Peng L; Zhang MJ; Fine JP
    J R Stat Soc Series B Stat Methodol; 2021 Jul; 83(3):559-578. PubMed ID: 35444487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiparametric estimation of structural failure time models in continuous-time processes.
    Yang S; Pieper K; Cools F
    Biometrika; 2020 Mar; 107(1):123-136. PubMed ID: 33162561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted estimators of the complier average causal effect on restricted mean survival time with observed instrument-outcome confounders.
    Dharmarajan SH; Li Y; Lehmann D; Schaubel DE
    Biom J; 2021 Apr; 63(4):712-724. PubMed ID: 33346382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instrumental variable estimation of the marginal structural Cox model for time-varying treatments.
    Cui Y; Michael H; Tanser F; Tchetgen Tchetgen E
    Biometrika; 2023 Mar; 110(1):101-118. PubMed ID: 36798841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.