BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30034338)

  • 1. Master Regulators Connectivity Map: A Transcription Factors-Centered Approach to Drug Repositioning.
    De Bastiani MA; Pfaffenseller B; Klamt F
    Front Pharmacol; 2018; 9():697. PubMed ID: 30034338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates.
    Vargas DM; De Bastiani MA; Zimmer ER; Klamt F
    Alzheimers Res Ther; 2018 Jun; 10(1):59. PubMed ID: 29935546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated transcriptomics reveals master regulators of lung adenocarcinoma and novel repositioning of drug candidates.
    De Bastiani MA; Klamt F
    Cancer Med; 2019 Nov; 8(15):6717-6729. PubMed ID: 31503425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrated System Biology Approach Yields Drug Repositioning Candidates for the Treatment of Heart Failure.
    Yang G; Ma A; Qin ZS
    Front Genet; 2019; 10():916. PubMed ID: 31608126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic Data Mining and Repurposing for Computational Drug Discovery.
    Wang Y; Yella J; Jegga AG
    Methods Mol Biol; 2019; 1903():73-95. PubMed ID: 30547437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic-Guided Drug Repositioning Supported by a New Bioinformatics Search Tool: geneXpharma.
    Turanli B; Gulfidan G; Arga KY
    OMICS; 2017 Oct; 21(10):584-591. PubMed ID: 29049014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of COVID-19 transcriptional signatures between clinical samples and preclinical cell models in the search for disease master regulators and drug repositioning candidates.
    Chapola H; de Bastiani MA; Duarte MM; Freitas MB; Schuster JS; de Vargas DM; Klamt F
    Virus Res; 2023 Mar; 326():199053. PubMed ID: 36709793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Proteotranscriptomic-Based Computational Drug-Repositioning Method for Alzheimer's Disease.
    Lee SY; Song MY; Kim D; Park C; Park DK; Kim DG; Yoo JS; Kim YH
    Front Pharmacol; 2019; 10():1653. PubMed ID: 32063857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Drug-repositioning Approach Identifying Sirolimus as a Potential Therapeutic Option for Inflammatory Dilated Cardiomyopathy.
    Shibata K; Endo T; Kuribayashi Y
    Drug Res (Stuttg); 2019 Oct; 69(10):565-571. PubMed ID: 31238376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposed Drugs as Potential Therapeutic Candidates for the Management of Alzheimer's Disease.
    Shoaib M; Kamal MA; Rizvi SMD
    Curr Drug Metab; 2017; 18(9):842-852. PubMed ID: 28595531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Drug Repurposing: Current Trends.
    Karaman B; Sippl W
    Curr Med Chem; 2019; 26(28):5389-5409. PubMed ID: 29848268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting Connectivity Map from a gene co-expression network analysis.
    Liu W; Tu W; Li L; Liu Y; Wang S; Li L; Tao H; He H
    Exp Ther Med; 2018 Aug; 16(2):493-500. PubMed ID: 30112021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel statistical approach for identification of the master regulator transcription factor.
    Sikdar S; Datta S
    BMC Bioinformatics; 2017 Feb; 18(1):79. PubMed ID: 28148240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer.
    Chen HR; Sherr DH; Hu Z; DeLisi C
    BMC Med Genomics; 2016 Jul; 9(1):51. PubMed ID: 27475327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data on master regulators and transcription factor binding sites found by upstream analysis of multi-omics data on methotrexate resistance of colon cancer.
    Kel A
    Data Brief; 2017 Feb; 10():499-504. PubMed ID: 28054015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug repositioning: re-investigating existing drugs for new therapeutic indications.
    Padhy BM; Gupta YK
    J Postgrad Med; 2011; 57(2):153-60. PubMed ID: 21654146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning.
    Wang R; Li S; Cheng L; Wong MH; Leung KS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 26):628. PubMed ID: 31839008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.