These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30034760)
1. A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Ding Z; Long X; Dou C; Liu J; Wang L Chem Sci; 2016 Sep; 7(9):6197-6202. PubMed ID: 30034760 [TBL] [Abstract][Full Text] [Related]
2. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells. Dou C; Long X; Ding Z; Xie Z; Liu J; Wang L Angew Chem Int Ed Engl; 2016 Jan; 55(4):1436-40. PubMed ID: 26663513 [TBL] [Abstract][Full Text] [Related]
3. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors. Yin Y; Yang J; Guo F; Zhou E; Zhao L; Zhang Y ACS Appl Mater Interfaces; 2018 May; 10(18):15962-15970. PubMed ID: 29660294 [TBL] [Abstract][Full Text] [Related]
4. Molecular Optimization on Polymer Acceptor Enables Efficient All-Polymer Solar Cell with High Open-Circuit Voltage of 1.10 V. Yang H; Bao S; Fan H; Fan C; Zhu X; Cui C; Li Y Macromol Rapid Commun; 2022 Nov; 43(22):e2100925. PubMed ID: 35170109 [TBL] [Abstract][Full Text] [Related]
5. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
6. Naphthalene diimide-based random terpolymer acceptors for constructing all-polymer solar cells with enhanced fill factors. He B; Liu L; Liu Y; Chen G; Xiao M; Dai C RSC Adv; 2022 Jun; 12(28):17898-17904. PubMed ID: 35765348 [TBL] [Abstract][Full Text] [Related]
7. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2- Chen L; Zeng M; Weng C; Tan S; Shen P ACS Appl Mater Interfaces; 2019 Dec; 11(51):48134-48146. PubMed ID: 31823611 [TBL] [Abstract][Full Text] [Related]
8. Effects of a Fluorinated Donor Polymer on the Morphology, Photophysics, and Performance of All-Polymer Solar Cells Based on Naphthalene Diimide-Arylene Copolymer Acceptors. Tran DK; Kolhe NB; Hwang YJ; Kuzuhara D; Koganezawa T; Jenekhe SA ACS Appl Mater Interfaces; 2020 Apr; 12(14):16490-16502. PubMed ID: 32180406 [TBL] [Abstract][Full Text] [Related]
9. Polymer Acceptor Based on Double B←N Bridged Bipyridine (BNBP) Unit for High-Efficiency All-Polymer Solar Cells. Long X; Ding Z; Dou C; Zhang J; Liu J; Wang L Adv Mater; 2016 Aug; 28(30):6504-8. PubMed ID: 27167123 [TBL] [Abstract][Full Text] [Related]
10. PTB7-Th based organic solar cell with a high V Xiao B; Zhao Y; Tang A; Wang H; Yang J; Zhou E Sci Bull (Beijing); 2017 Sep; 62(18):1275-1282. PubMed ID: 36659456 [TBL] [Abstract][Full Text] [Related]
11. Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor-acceptor conjugated copolymer. Liu C; Yi C; Wang K; Yang Y; Bhatta RS; Tsige M; Xiao S; Gong X ACS Appl Mater Interfaces; 2015 Mar; 7(8):4928-35. PubMed ID: 25671670 [TBL] [Abstract][Full Text] [Related]
12. Introducing Porphyrin Units by Random Copolymerization Into NDI-Based Acceptor for All Polymer Solar Cells. Liu J; Li M; Chen D; Huang B; He Q; Ding S; Xie W; Wu F; Chen L; Chen Y Front Chem; 2020; 8():310. PubMed ID: 32411664 [TBL] [Abstract][Full Text] [Related]
13. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Liang Y; Yu L Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907 [TBL] [Abstract][Full Text] [Related]
14. Enhanced performance of organic photovoltaic cells fabricated with a methyl thiophene-3-carboxylate-containing alternating conjugated copolymer. Cho MJ; Seo J; Kim KH; Choi DH; Prasad PN Macromol Rapid Commun; 2012 Jan; 33(2):146-51. PubMed ID: 22121017 [TBL] [Abstract][Full Text] [Related]
15. Impact of Incorporating Nitrogen Atoms in Naphthalenediimide-Based Polymer Acceptors on the Charge Generation, Device Performance, and Stability of All-Polymer Solar Cells. Kim SW; Wang Y; You H; Lee W; Michinobu T; Kim BJ ACS Appl Mater Interfaces; 2019 Oct; 11(39):35896-35903. PubMed ID: 31532612 [TBL] [Abstract][Full Text] [Related]
17. Regioregular and Regioirregular Poly(selenophene-perylene diimide) Acceptors for Polymer-Polymer Solar Cells. Liang Y; Lan S; Deng P; Zhou D; Guo Z; Chen H; Zhan H ACS Appl Mater Interfaces; 2018 Sep; 10(38):32397-32403. PubMed ID: 30152680 [TBL] [Abstract][Full Text] [Related]
18. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content. Wang K; Guo X; Guo B; Li W; Zhang M; Li Y Macromol Rapid Commun; 2016 Jul; 37(13):1066-73. PubMed ID: 27174683 [TBL] [Abstract][Full Text] [Related]
19. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. Earmme T; Hwang YJ; Murari NM; Subramaniyan S; Jenekhe SA J Am Chem Soc; 2013 Oct; 135(40):14960-3. PubMed ID: 24083488 [TBL] [Abstract][Full Text] [Related]
20. 4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for High-Efficiency Polymer Solar Cells. Li G; Gong X; Zhang J; Liu Y; Feng S; Li C; Bo Z ACS Appl Mater Interfaces; 2016 Feb; 8(6):3686-92. PubMed ID: 26646056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]