These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30035072)

  • 41. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control.
    Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M
    J Neuroeng Rehabil; 2018 Sep; 15(1):84. PubMed ID: 30231916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robotics for Lower Limb Rehabilitation.
    Esquenazi A; Talaty M
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):385-397. PubMed ID: 30954154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances in Automation Technologies for Lower Extremity Neurorehabilitation: A Review and Future Challenges.
    Deng W; Papavasileiou I; Qiao Z; Zhang W; Lam KY; Han S
    IEEE Rev Biomed Eng; 2018; 11():289-305. PubMed ID: 29994006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia - a Review.
    Chang SR; Kobetic R; Audu ML; Quinn RD; Triolo RJ
    Case Orthop J; 2015; 12(1):75-80. PubMed ID: 28004009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mobility related physical and functional losses due to aging and disease - a motivation for lower limb exoskeletons.
    Grimmer M; Riener R; Walsh CJ; Seyfarth A
    J Neuroeng Rehabil; 2019 Jan; 16(1):2. PubMed ID: 30606194
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensors and algorithms for locomotion intention detection of lower limb exoskeletons.
    Wang D; Gu X; Yu H
    Med Eng Phys; 2023 Mar; 113():103960. PubMed ID: 36966000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 49. Mechanical Sensing for Lower Limb Soft Exoskeletons: Recent Progress and Challenges.
    Totaro M; Di Natali C; Bernardeschi I; Ortiz J; Beccai L
    Adv Exp Med Biol; 2019; 1170():69-85. PubMed ID: 32067203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies.
    Lora-Millan JS; Moreno JC; Rocon E
    Front Bioeng Biotechnol; 2022; 10():842294. PubMed ID: 35694226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study.
    Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D
    Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.
    Yandell MB; Quinlivan BT; Popov D; Walsh C; Zelik KE
    J Neuroeng Rehabil; 2017 May; 14(1):40. PubMed ID: 28521803
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results.
    Molteni F; Gasperini G; Gaffuri M; Colombo M; Giovanzana C; Lorenzon C; Farina N; Cannaviello G; Scarano S; Proserpio D; Liberali D; Guanziroli E
    Eur J Phys Rehabil Med; 2017 Oct; 53(5):676-684. PubMed ID: 28118698
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exotendons for assistance of human locomotion.
    van den Bogert AJ
    Biomed Eng Online; 2003 Oct; 2():17. PubMed ID: 14613503
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles.
    Sanchez-Villamañan MDC; Gonzalez-Vargas J; Torricelli D; Moreno JC; Pons JL
    J Neuroeng Rehabil; 2019 May; 16(1):55. PubMed ID: 31072370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons.
    Shahid T; Gouwanda D; Nurzaman SG; Gopalai AA
    Biomimetics (Basel); 2018 Jul; 3(3):. PubMed ID: 31105239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human biomechanics perspective on robotics for gait assistance: challenges and potential solutions.
    Wu AR
    Proc Biol Sci; 2021 Aug; 288(1956):20211197. PubMed ID: 34344175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perceptions of Existing Wearable Robotic Devices for Upper Extremity and Suggestions for Their Development: Findings From Therapists and People With Stroke.
    Elnady A; Mortenson WB; Menon C
    JMIR Rehabil Assist Technol; 2018 May; 5(1):e12. PubMed ID: 29764799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Research progress on compliant characteristics of lower extremity exoskeleton robots].
    Si G; Huang W; Li G; Xu F; Chu M; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):157-163. PubMed ID: 30887791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.
    Gui K; Liu H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2054-2066. PubMed ID: 28504943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.