BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 30035229)

  • 21. The equation of motion for supershear frictional rupture fronts.
    Kammer DS; Svetlizky I; Cohen G; Fineberg J
    Sci Adv; 2018 Jul; 4(7):eaat5622. PubMed ID: 30035229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laboratory earthquakes decipher control and stability of rupture speeds.
    Dong P; Xia K; Xu Y; Elsworth D; Ampuero JP
    Nat Commun; 2023 Apr; 14(1):2427. PubMed ID: 37105963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signature of transition to supershear rupture speed in the coseismic off-fault damage zone.
    Jara J; Bruhat L; Thomas MY; Antoine SL; Okubo K; Rougier E; Rosakis AJ; Sammis CG; Klinger Y; Jolivet R; Bhat HS
    Proc Math Phys Eng Sci; 2021 Nov; 477(2255):20210364. PubMed ID: 35153594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minimal model for slow, sub-Rayleigh, supershear, and unsteady rupture propagation along homogeneously loaded frictional interfaces.
    Thøgersen K; Sveinsson HA; Amundsen DS; Scheibert J; Renard F; Malthe-Sørenssen A
    Phys Rev E; 2019 Oct; 100(4-1):043004. PubMed ID: 31771025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches.
    Trottet B; Simenhois R; Bobillier G; Bergfeld B; van Herwijnen A; Jiang C; Gaume J
    Nat Phys; 2022; 18(9):1094-1098. PubMed ID: 36097630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding dynamic friction through spontaneously evolving laboratory earthquakes.
    Rubino V; Rosakis AJ; Lapusta N
    Nat Commun; 2017 Jun; 8():15991. PubMed ID: 28660876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frictional Resistance within the Wake of Frictional Rupture Fronts.
    Svetlizky I; Bayart E; Cohen G; Fineberg J
    Phys Rev Lett; 2017 Jun; 118(23):234301. PubMed ID: 28644666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brittle Fracture Theory Predicts the Equation of Motion of Frictional Rupture Fronts.
    Svetlizky I; Kammer DS; Bayart E; Cohen G; Fineberg J
    Phys Rev Lett; 2017 Mar; 118(12):125501. PubMed ID: 28388201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slippery but Tough: The Rapid Fracture of Lubricated Frictional Interfaces.
    Bayart E; Svetlizky I; Fineberg J
    Phys Rev Lett; 2016 May; 116(19):194301. PubMed ID: 27232023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of the shear stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip.
    Svetlizky I; Pino Muñoz D; Radiguet M; Kammer DS; Molinari JF; Fineberg J
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):542-7. PubMed ID: 26729877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classical shear cracks drive the onset of dry frictional motion.
    Svetlizky I; Fineberg J
    Nature; 2014 May; 509(7499):205-8. PubMed ID: 24805344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks.
    Passelègue FX; Schubnel A; Nielsen S; Bhat HS; Madariaga R
    Science; 2013 Jun; 340(6137):1208-11. PubMed ID: 23744944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The dynamics of the onset of frictional slip.
    Ben-David O; Cohen G; Fineberg J
    Science; 2010 Oct; 330(6001):211-4. PubMed ID: 20929771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction.
    Hilairet N; Reynard B; Wang Y; Daniel I; Merkel S; Nishiyama N; Petitgirard S
    Science; 2007 Dec; 318(5858):1910-3. PubMed ID: 18096804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detachment fronts and the onset of dynamic friction.
    Rubinstein SM; Cohen G; Fineberg J
    Nature; 2004 Aug; 430(7003):1005-9. PubMed ID: 15329715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition.
    Xia K; Rosakis AJ; Kanamori H
    Science; 2004 Mar; 303(5665):1859-61. PubMed ID: 15031503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake.
    Bouchon M; Vallée M
    Science; 2003 Aug; 301(5634):824-6. PubMed ID: 12907799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The 2002 Denali fault earthquake, Alaska: a large magnitude, slip-partitioned event.
    Eberhart-Phillips D; Haeussler PJ; Freymueller JT; Frankel AD; Rubin CM; Craw P; Ratchkovski NA; Anderson G; Carver GA; Crone AJ; Dawson TE; Fletcher H; Hansen R; Harp EL; Harris RA; Hill DP; Hreinsdóttir S; Jibson RW; Jones LM; Kayen R; Keefer DK; Larsen CF; Moran SC; Personius SF; Plafker G; Sherrod B; Sieh K; Sitar N; Wallace WK
    Science; 2003 May; 300(5622):1113-8. PubMed ID: 12750512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A supershear transition mechanism for cracks.
    Dunham EM; Favreau P; Carlson JM
    Science; 2003 Mar; 299(5612):1557-9. PubMed ID: 12624262
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.