These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30035321)

  • 41. Complex genetic architecture underlies maize tassel domestication.
    Xu G; Wang X; Huang C; Xu D; Li D; Tian J; Chen Q; Wang C; Liang Y; Wu Y; Yang X; Tian F
    New Phytol; 2017 Apr; 214(2):852-864. PubMed ID: 28067953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene.
    Hilton H; Gaut BS
    Genetics; 1998 Oct; 150(2):863-72. PubMed ID: 9755214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patterns of selection and tissue-specific expression among maize domestication and crop improvement loci.
    Hufford KM; Canaran P; Ware DH; McMullen MD; Gaut BS
    Plant Physiol; 2007 Jul; 144(3):1642-53. PubMed ID: 17496114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation.
    Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F
    Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent demography drives changes in linked selection across the maize genome.
    Beissinger TM; Wang L; Crosby K; Durvasula A; Hufford MB; Ross-Ibarra J
    Nat Plants; 2016 Jun; 2():16084. PubMed ID: 27294617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic dissection of a genomic region with pleiotropic effects on domestication traits in maize reveals multiple linked QTL.
    Lemmon ZH; Doebley JF
    Genetics; 2014 Sep; 198(1):345-53. PubMed ID: 24950893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomics of Long- and Short-Term Adaptation in Maize and Teosintes.
    Lorant A; Ross-Ibarra J; Tenaillon M
    Methods Mol Biol; 2020; 2090():289-311. PubMed ID: 31975172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of meiotic recombination genes in maize and teosinte.
    Sidhu GK; Warzecha T; Pawlowski WP
    BMC Genomics; 2017 Jan; 18(1):106. PubMed ID: 28122517
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus.
    Clark RM; Tavaré S; Doebley J
    Mol Biol Evol; 2005 Nov; 22(11):2304-12. PubMed ID: 16079248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations.
    Doebley J; Stec A
    Genetics; 1993 Jun; 134(2):559-70. PubMed ID: 8325489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding.
    Vallebueno-Estrada M; Rodríguez-Arévalo I; Rougon-Cardoso A; Martínez González J; García Cook A; Montiel R; Vielle-Calzada JP
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14151-14156. PubMed ID: 27872313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.
    Liu J; Fernie AR; Yan J
    Plant Commun; 2020 Jan; 1(1):100010. PubMed ID: 33404535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping.
    Weber AL; Briggs WH; Rucker J; Baltazar BM; de Jesús Sánchez-Gonzalez J; Feng P; Buckler ES; Doebley J
    Genetics; 2008 Oct; 180(2):1221-32. PubMed ID: 18791250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement.
    Xu G; Lyu J; Li Q; Liu H; Wang D; Zhang M; Springer NM; Ross-Ibarra J; Yang J
    Nat Commun; 2020 Nov; 11(1):5539. PubMed ID: 33139747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight.
    Hufford MB; Martínez-Meyer E; Gaut BS; Eguiarte LE; Tenaillon MI
    PLoS One; 2012; 7(11):e47659. PubMed ID: 23155371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Gene for Genetic Background in Zea mays: Fine-Mapping enhancer of teosinte branched1.2 to a YABBY Class Transcription Factor.
    Yang CJ; Kursel LE; Studer AJ; Bartlett ME; Whipple CJ; Doebley JF
    Genetics; 2016 Dec; 204(4):1573-1585. PubMed ID: 27729422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression.
    Dong Z; Xiao Y; Govindarajulu R; Feil R; Siddoway ML; Nielsen T; Lunn JE; Hawkins J; Whipple C; Chuck G
    Nat Commun; 2019 Aug; 10(1):3810. PubMed ID: 31444327
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of regulatory genes during maize domestication: evidence from nucleotide polymorphism and gene expression.
    Zhao Q; Thuillet AC; Uhlmann NK; Weber A; Rafalski JA; Allen SM; Tingey S; Doebley J
    Genetics; 2008 Apr; 178(4):2133-43. PubMed ID: 18430939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Maize Sh2 gene is constrained by natural selection but escaped domestication.
    Manicacci D; Falque M; Le Guillou S; Piégu B; Henry AM; Le Guilloux M; Damerval C; De Vienne D
    J Evol Biol; 2007 Mar; 20(2):503-16. PubMed ID: 17305816
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte.
    Minow MAA; Ávila LM; Turner K; Ponzoni E; Mascheretti I; Dussault FM; Lukens L; Rossi V; Colasanti J
    J Exp Bot; 2018 May; 69(12):2937-2952. PubMed ID: 29688423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.