These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30035528)

  • 1. Engineering Defects in Graphene Oxide for Selective Ammonia and Enzyme-Free Glucose Sensing and Excellent Catalytic Performance for para-Nitrophenol Reduction.
    Raza W; Krupanidhi SB
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25285-25294. PubMed ID: 30035528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retraction of "Engineering Defects in Graphene Oxide for Selective Ammonia and Enzyme-Free Glucose Sensing and Excellent Catalytic Performance for para-Nitrophenol Reduction".
    Raza W; Krupanidhi SB
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2560. PubMed ID: 30602273
    [No Abstract]   [Full Text] [Related]  

  • 3. Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability.
    Ghule BG; Shinde NM; Raut SD; Shaikh SF; Al-Enizi AM; Kim KH; Mane RS
    J Colloid Interface Sci; 2021 May; 589():401-410. PubMed ID: 33482537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol.
    Lu W; Ning R; Qin X; Zhang Y; Chang G; Liu S; Luo Y; Sun X
    J Hazard Mater; 2011 Dec; 197():320-6. PubMed ID: 22019107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices.
    Yang J; Yu JH; Rudi Strickler J; Chang WJ; Gunasekaran S
    Biosens Bioelectron; 2013 Sep; 47():530-8. PubMed ID: 23644058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically reduced graphene oxide for ammonia detection at room temperature.
    Ghosh R; Midya A; Santra S; Ray SK; Guha PK
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7599-603. PubMed ID: 23856001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative Nanosensor for Disease Diagnosis.
    Kim SJ; Choi SJ; Jang JS; Cho HJ; Kim ID
    Acc Chem Res; 2017 Jul; 50(7):1587-1596. PubMed ID: 28481075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.
    Lu G; Park S; Yu K; Ruoff RS; Ocola LE; Rosenmann D; Chen J
    ACS Nano; 2011 Feb; 5(2):1154-64. PubMed ID: 21204575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing.
    Javadian-Saraf A; Hosseini E; Wiltshire BD; Zarifi MH; Arjmand M
    J Hazard Mater; 2021 Sep; 418():126283. PubMed ID: 34116273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sono-synthesis approach of reduced graphene oxide for ammonia vapour detection at room temperature.
    Veluswamy P; Sathiyamoorthy S; P S; Karunakaran G; Lee CW; Kuznetsov D; Kadarkaraithangam J; Ikeda H
    Ultrason Sonochem; 2018 Nov; 48():555-566. PubMed ID: 30080585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis.
    Sheng ZH; Shao L; Chen JJ; Bao WJ; Wang FB; Xia XH
    ACS Nano; 2011 Jun; 5(6):4350-8. PubMed ID: 21574601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in applications of graphene oxide for gas sensing: A review.
    Toda K; Furue R; Hayami S
    Anal Chim Acta; 2015 Jun; 878():43-53. PubMed ID: 26002325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cux Co1-x O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High-Efficiency Hydrolysis of Ammonia-Borane.
    Feng K; Zhong J; Zhao B; Zhang H; Xu L; Sun X; Lee ST
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11950-4. PubMed ID: 27532345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reusable sensor based on high magnetization carboxyl-modified graphene oxide with intrinsic hydrogen peroxide catalytic activity for hydrogen peroxide and glucose detection.
    Yang HW; Hua MY; Chen SL; Tsai RY
    Biosens Bioelectron; 2013 Mar; 41():172-9. PubMed ID: 22959012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Synergistic Properties and Gas Sensing Performance of Functionalized Graphene-Based Sensors.
    Leve ZD; Iwuoha EI; Ross N
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.
    Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L
    Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose.
    Nekouei F; Nekouei S; Jashnsaz O; Pouzesh M
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():576-588. PubMed ID: 29853128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer.
    Alexander S; Baraneedharan P; Balasubrahmanyan S; Ramaprabhu S
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():124-129. PubMed ID: 28575963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifunctional nanocatalyst based on three-dimensional carbon nanotube-graphene hydrogel supported Pd nanoparticles: one-pot synthesis and its catalytic properties.
    Zhang Z; Sun T; Chen C; Xiao F; Gong Z; Wang S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21035-40. PubMed ID: 25375195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection.
    Cui S; Mao S; Wen Z; Chang J; Zhang Y; Chen J
    Analyst; 2013 May; 138(10):2877-82. PubMed ID: 23527378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.