These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30035650)

  • 1. Dynamic rheology as a quantitative method for real-time tracking of excipient solvation in non-aqueous hydroxypropylcellulose topical gels.
    Potuck A; Leming R; Lam S
    Pharm Dev Technol; 2019 Apr; 24(4):521-527. PubMed ID: 30035650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological characterization of hydroxypropylcellulose gels.
    Ramachandran S; Chen S; Etzler F
    Drug Dev Ind Pharm; 1999 Feb; 25(2):153-61. PubMed ID: 10065348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic evaluation of topical creams containing microcrystalline cellulose/sodium carboxymethyl cellulose as stabilizer.
    Adeyeye MC; Jain AC; Ghorab MK; Reilly WJ
    AAPS PharmSciTech; 2002; 3(2):E8. PubMed ID: 12916945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation and evaluation of curcumin gel for topical application.
    Patel NA; Patel NJ; Patel RP
    Pharm Dev Technol; 2009; 14(1):80-9. PubMed ID: 18821270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel nano-cellulose excipient for generating non-Newtonian droplets for targeted nasal drug delivery.
    Young PM; Traini D; Ong HX; Granieri A; Zhu B; Scalia S; Song J; Spicer PT
    Drug Dev Ind Pharm; 2017 Oct; 43(10):1729-1733. PubMed ID: 28581833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic behavior of cellulose acetate in a mixed solvent system.
    Appaw C; Gilbert RD; Khan SA; Kadla JF
    Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug release from hydroxypropylcellulose gels cannot be statistically predicted from their viscometric and initial viscoelastic properties.
    Jones DS; Rafferty GP; Andrews GP
    Carbohydr Polym; 2021 Mar; 256():117512. PubMed ID: 33483033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological characterization of topical carbomer gels neutralized to different pH.
    Islam MT; Rodríguez-Hornedo N; Ciotti S; Ackermann C
    Pharm Res; 2004 Jul; 21(7):1192-9. PubMed ID: 15290859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydration on the structure of non aqueous ethyl cellulose/propylene glycol dicaprylate gels.
    Bruno L; Kasapis S; Heng PW
    Int J Biol Macromol; 2012 Mar; 50(2):385-92. PubMed ID: 22227266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel nonaqueous ethylcellulose gel matrices: rheological and mechanical characterization.
    Heng PW; Chan LW; Chow KT
    Pharm Res; 2005 Apr; 22(4):676-84. PubMed ID: 15846476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pluronic F-127 gels as a vehicle for topical formulations of indomethacin and rheological behaviour of these formulations.
    Shawesh A; Kallioinen S; Hellén L; Antikainen O; Yliruusi J
    Pharmazie; 2002 Mar; 57(3):186-90. PubMed ID: 11933848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microviscosity of hydroxypropylcellulose gels as a basis for prediction of drug diffusion rates.
    Alvarez-Lorenzo C; Gómez-Amoza JL; Martínez-Pacheco R; Souto C; Concheiro A
    Int J Pharm; 1999 Mar; 180(1):91-103. PubMed ID: 10089296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH-water solvent.
    Wang W; Li F; Yu J; Navard P; Budtova T
    Carbohydr Polym; 2015 Jun; 124():85-9. PubMed ID: 25839797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.
    Phaechamud T; Mahadlek J
    Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gellan gum fluid gels for topical administration of diclofenac.
    Mahdi MH; Conway BR; Mills T; Smith AM
    Int J Pharm; 2016 Dec; 515(1-2):535-542. PubMed ID: 27789369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro release of ketoprofen from hydrophilic matrix tablets containing cellulose polymer mixtures.
    Vueba ML; Batista de Carvalho LA; Veiga F; Sousa JJ; Pina ME
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1651-62. PubMed ID: 23094867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological characterisation of primary and binary interactive bioadhesive gels composed of cellulose derivatives designed as ophthalmic viscosurgical devices.
    Andrews GP; Gorman SP; Jones DS
    Biomaterials; 2005 Feb; 26(5):571-80. PubMed ID: 15276365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system.
    Kadla JF; Korehei R
    Biomacromolecules; 2010 Apr; 11(4):1074-81. PubMed ID: 20235573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose hydrogels using a controlled stress rheometer: part II.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):63-73. PubMed ID: 15725554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation of hydrophilic non-aqueous gel: drug stability in different solvents and rheological behavior of gel matrices.
    Chow KT; Chan LW; Heng PW
    Pharm Res; 2008 Jan; 25(1):207-17. PubMed ID: 17909742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.