BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30035657)

  • 1. Targeting autophagy for therapy of hyperammonemia.
    Soria LR; Brunetti-Pierri N
    Autophagy; 2018; 14(7):1273-1275. PubMed ID: 30035657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of hepatic autophagy increases ureagenesis and protects against hyperammonemia.
    Soria LR; Allegri G; Melck D; Pastore N; Annunziata P; Paris D; Polishchuk E; Nusco E; Thöny B; Motta A; Häberle J; Ballabio A; Brunetti-Pierri N
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):391-396. PubMed ID: 29279371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonia and autophagy: An emerging relationship with implications for disorders with hyperammonemia.
    Soria LR; Brunetti-Pierri N
    J Inherit Metab Dis; 2019 Nov; 42(6):1097-1104. PubMed ID: 30671986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the treatment of hyperammonemia.
    Matoori S; Leroux JC
    Adv Drug Deliv Rev; 2015 Aug; 90():55-68. PubMed ID: 25895618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive characterization of ureagenesis in the spf
    Allegri G; Deplazes S; Rimann N; Causton B; Scherer T; Leff JW; Diez-Fernandez C; Klimovskaia A; Fingerhut R; Krijt J; Kožich V; Nuoffer JM; Grisch-Chan HM; Thöny B; Häberle J
    J Inherit Metab Dis; 2019 Nov; 42(6):1064-1076. PubMed ID: 30714172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia metabolism and hyperammonemic disorders.
    Walker V
    Adv Clin Chem; 2014; 67():73-150. PubMed ID: 25735860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beclin-1-mediated activation of autophagy improves proximal and distal urea cycle disorders.
    Soria LR; Gurung S; De Sabbata G; Perocheau DP; De Angelis A; Bruno G; Polishchuk E; Paris D; Cuomo P; Motta A; Orford M; Khalil Y; Eaton S; Mills PB; Waddington SN; Settembre C; Muro AF; Baruteau J; Brunetti-Pierri N
    EMBO Mol Med; 2021 Feb; 13(2):e13158. PubMed ID: 33369168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving towards a novel therapeutic strategy for hyperammonemia that targets glutamine metabolism.
    Fukui K; Takahashi T; Matsunari H; Uchikura A; Watanabe M; Nagashima H; Ishihara N; Kakuma T; Watanabe Y; Yamashita Y; Yoshino M
    J Inherit Metab Dis; 2022 Nov; 45(6):1059-1069. PubMed ID: 35866457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-GlcNAcylation enhances CPS1 catalytic efficiency for ammonia and promotes ureagenesis.
    Soria LR; Makris G; D'Alessio AM; De Angelis A; Boffa I; Pravata VM; Rüfenacht V; Attanasio S; Nusco E; Arena P; Ferenbach AT; Paris D; Cuomo P; Motta A; Nitzahn M; Lipshutz GS; Martínez-Pizarro A; Richard E; Desviat LR; Häberle J; van Aalten DMF; Brunetti-Pierri N
    Nat Commun; 2022 Sep; 13(1):5212. PubMed ID: 36064721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An orally deliverable ornithine-based self-assembling polymer nanomedicine ameliorates hyperammonemia in acetaminophen-induced acute liver injury.
    Ding Y; Koda Y; Shashni B; Takeda N; Zhang X; Tanaka N; Nishikawa Y; Nagasaki Y
    Acta Biomater; 2023 Sep; 168():515-528. PubMed ID: 37433359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonia toxicity and its prevention in inherited defects of the urea cycle.
    Walker V
    Diabetes Obes Metab; 2009 Sep; 11(9):823-35. PubMed ID: 19531057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonia detoxification via ureagenesis in rat hepatocytes involves mitochondrial aquaporin-8 channels.
    Soria LR; Marrone J; Calamita G; Marinelli RA
    Hepatology; 2013 May; 57(5):2061-71. PubMed ID: 23299935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sericin enhances ammonia detoxification by promotes urea cycle enzyme genes and activates hepatic autophagy in relation to CARD-9/MAPK pathway.
    Ampawong S; Tirawanchai N; Kanjanapruthipong T; Fongsodsri K; Tuentam K; Isarangkul D; Aramwit P
    Heliyon; 2023 Nov; 9(11):e21563. PubMed ID: 38027599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies.
    Moedas MF; Simões RJM; Silva MFB
    Biochem Pharmacol; 2024 Apr; 222():116034. PubMed ID: 38307136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperammonemia in a Woman with Late-onset Ornithine Transcarbamylase Deficiency.
    Koya Y; Shibata M; Senju M; Honma Y; Hiura M; Ishii M; Matsumoto S; Harada M
    Intern Med; 2019 Apr; 58(7):937-942. PubMed ID: 30449781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperammonemia in urea cycle disorders: role of the nephrologist.
    Mathias RS; Kostiner D; Packman S
    Am J Kidney Dis; 2001 May; 37(5):1069-80. PubMed ID: 11325692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperammonemia in Inherited Metabolic Diseases.
    Ribas GS; Lopes FF; Deon M; Vargas CR
    Cell Mol Neurobiol; 2022 Nov; 42(8):2593-2610. PubMed ID: 34665389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid and DNA analyses in a family with ornithine transcarbamylase deficiency.
    Hou JW; Wang TR
    J Formos Med Assoc; 1996 Feb; 95(2):144-7. PubMed ID: 9064003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inborn Errors of Metabolism with Hyperammonemia: Urea Cycle Defects and Related Disorders.
    Summar ML; Mew NA
    Pediatr Clin North Am; 2018 Apr; 65(2):231-246. PubMed ID: 29502911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders.
    Häberle J
    Arch Biochem Biophys; 2013 Aug; 536(2):101-8. PubMed ID: 23628343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.